Logical system with negligible probability

Takeuti Izumi 7 March 2015

1

Formalisation of proofs

- Academic significance

Not to prove a new theorem

To analyse the proof

To clarify the essence of inferences

- Industrial significance

Not to provide a new cryptgraphic function

To make the proof less mistaken and more dependable

To make the proof machine-checkable

To enable the proof to be circulated in non-mathematicians

The notion of 'negligibly small probability' often occurs in arguments of cryptograhpy.

For instance:

- 1. The difference of the probabilities of $oldsymbol{X}$ and $oldsymbol{Y}$ is negligibly small.
- 2. The difference of the probabilities of Y and Z is also negligibly small.

3. Therefore, the difference of the probabilities of X and Z is also negligibly small.

3

Formal definition of negligibly small probability:

A value ϵ depending on the security parameter is *negligibly small* iff for any positive polynomial p(), there is a number N such that for any security parameter n > N, it holds $\epsilon < 1/p(n)$. The argument with negligibly small probability is often like the following:

1. Put an arbitray polynomial p().

2. $|\Pr[X] - \Pr[Y]| < 1/2p(n)$ for large n.

3. Also $|\Pr[Y] - \Pr[Z]| < 1/2p(n)$ for large n.

4. Hence $|\Pr[X] - \Pr[Z]| < 1/p(n)$ for large n.

5. Therefore the difference of probabilities $|\Pr[X] - \Pr[Z]|$ is negligibly small.

This argument uses a method of mathematical analysis.

5

A method of mathematical analysis is not easy.

It sometimes induces mistakes in proofs.

A method of symbolic processing is better than it.

Negligible probability ofren appear in the following form: $|\Pr[P] - 1/2|$ is negligibly small.' We regard this as a modality for P. We propose a formal logical system with this modality, and prove a useful theorem in the formal system.

Aim: To propose a logical system with negligible probability which proves privacy in Kawamoto voting protocol

7

All the other systems deal with only rigid probabilities.

Thus they can formalise the discussion below:

- 1. $\Pr[X]$ is exactly equal to $\Pr[Y]$.
- 2. $\Pr[Y]$ is exactly equal to $\Pr[Z]$.
- 3. Therefore, $\Pr[X]$ is exactly equal to $\Pr[Z]$.

On the other hand, they cannot formalise the following discussion:

- 1. $\Pr[X]$ is close to $\Pr[Y]$.
- 2. $\Pr[Y]$ is close to $\Pr[Z]$.
- 3. Therefore, $\Pr[X]$ is close to $\Pr[Z]$.

Our system can formalise this discussion.

For a PTIME function f over 2^* , the following holds. There is polynomials p and q such that, for each positive integer n, there is a sequnce of logical circuites $C_1, C_2, ..., C_{q(n)}$ such that, the size of C_i is less than p(n) for each i = 1, 2, ..., q(n), and for any $x \in 2^{< n}$, $f(x) = \psi_{q(n)}(C_1(\phi_n(x))C_2(\phi_n(x))...C_{q(n)}(\phi_n(x)) \in 2^{< q(n)}$

 $\begin{array}{l} Circ_{n_1,n_2,\ldots,n_k}(\ldots) \text{ is an emulator of circuit, that is:}\\\\ \text{Let } C \text{ be a circuit, and } c \in 2^* \text{ be the code of } C.\\\\ \text{For any } x_1 \in 2^{<n_1}, x_2 \in 2^{<n_2}, \ldots, x_k \in 2^{<n_k},\\\\ Circ_{n_1,n_2,\ldots,n_k}(c,x_1,x_2,\ldots,x_k) = C(\phi_{n_1}(x_1)\phi_{n_2}(x_2)\ldots\phi_{n_k}(x_k))\\\\ \text{The code } c \text{ of a circuit } C \text{ is as large as a polynomial of the size of } C.\\\\ Circ_{\ldots}(\) \text{ is a PTIME function.}\\\\ \text{There are PTIME functions } f, f', f'' \text{ such that}\\\\ Circ_{\ldots}(f(c),x,y) = Circ_{\ldots}(c,y),\\\\ Circ_{\ldots}(f'(c,y),x) = Circ_{\ldots}(c,y,x).\\\\ \end{array}$

11

Encryption Scheme (G^E, G^D, E, D) : $-G^E(x, y)$: encryption key of seed x and nonce y. $-G^D(x, y)$: the decryption key for $G^E(x, y)$. -E(x, y, z) : encryption function with key x, message y and nonce z. -D(x, y) : decryption function with key x from encrypted message y. G^E, G^D, E and D are functions over 2^* such that $D(G^D(s, r), E(G^E(s, r), m, r')) = m$. When nonces are regarded as probabilistic variables, these G^E, G^D, E and D are regarded as probabilistic algorithm. An encryption scheme (G^E, G^D, E, D) is

a Encryption Scheme with Bound $oldsymbol{p}$ iff

– All of G^E, G^D, E, D are PTIME functions over 2^* .

- p is a polynomial.

– The computation times of $G^E(x,y)$, $G^D(x,y)$ and D(x,y)

are bounded by p(|x|) independently to y.

- The computation time of E(x,y,z) is bounded by $p(\max(|x|,|y|))$ independently to z.

- There is a PTIME function
$$f$$
 over 2^* such that
the computation time of $f(x, y, z)$ is bounded by
 $p(\max(|x|, |y|, |z|))$,
and that
for any $c \in 2^*$, $s, m, r, r' \in 2^{, $x \in 2^{,
 $Circ_{n,p(n),p^2(n),p^2(n)}(c, G^E(s, r), E(G^E(s, r), m, r'), x)$
 $= Circ_{p(n),p^2(n)}(f(c, m, r'), G^E(s, r), x)$$$

An encription scheme
$$(G^E, G^D, E, D)$$
 with bound p
has indistinguishable encryption, or is ciphertext-indistinguishable,
iff
for any positive polynomials q, q', q'' where $q'(n) \ge n$,
for any sequence $\{c_1, c_2, c_3, ...\}$ where $|c_n| < q''(n)$,
there is a number N such that,
for any $u > N$, for any $x_1, x_0 \in 2^{\leq q'(u)}$,
 $\#\{(i, r, r') \in 2 \times 2^{\leq p(u)} \times 2^{\leq p(q'(u))}|$
 $i = Circ(c_u, G^E(1^u, r), E(G^E(1^u, r), x_i, r'))\}$
 $< (1/2 + 1/q(u)) \cdot \#(2 \times 2^{\leq p(u)} \times 2^{\leq p(q'(u))})$

1	5
т	J

Kawamoto Voting Protocol

$$A$$

$$e_{A1} = E(k_{V1}, s_{A1}, n_{A1}) \qquad \swarrow \qquad \land \qquad e_{A2} = E(k_{V2}, s_{A2}, n_{A2})$$

$$s_{A1} = D(k_{V1}^{-1}, e_{A1}) \qquad \lor \qquad \land \qquad e_{A2} = D(k_{V2}^{-1}, e_{A2})$$

$$e_1 = E(k_C, \langle v_1, s_{A1} \rangle, n_1) \qquad \lor \qquad \lor \qquad e_2 = E(k_C, \langle v_2, s_{A2} \rangle, n_2)$$

$$e_1' = E(k_{MIX}, e_1, n_1') \qquad \searrow \qquad e_2' = E(k_{MIX}, e_2, n_2',)$$

$$MIX$$

$$e_1 = D(k_{MIX}^{-1}, e_1') \qquad \downarrow \qquad e_2 = D(k_{MIX}^{-1}, e_2')$$

$$C$$

$$v_1 = left(D(k_C^{-1}, e_1)) \qquad \downarrow \qquad v_2 = left(D(k_C^{-1}, e_2))$$

$$BB$$

Suppose that the intruder can look at both encrypted messages, but cannot send any message of identity fraud.

The privacy of that votes is provided by the indistinguishability of $E(k_{MIX}, e_1, n_1')$ from $E(k_{MIX}, e_2, n_2')$.

17

That is formalised into that: for any positive polynomials q, q', q'' where $q'(n) \ge n$, for any sequence $\{c_1, c_2, c_3, ...\}$ where $|c_n| < q''(n)$, there is a number N such that, for any u > N, for any $x_1, x_0 \in 2^{\leq q'(u)}$, $\#\{(i, r, r_0, r_1) \in 2 \times 2^{\leq p(u)} \times (2^{\leq p(q'(u))})^2 |$ $i = Circ(c_u, G^E(1^u, r),$ $E(G^E(1^u, r), x_i, r_i), E(G^E(1^u, r), x_{1-i}, r_{1-i}))\}$ $< (1/2 + 1/q(u)) \cdot \#(2 \times 2^{\leq p(u)} \times (2^{\leq p(q'(u))})^2)$ Informal proof — Hybid argument Each line is indisdinguishable to the next: $Circ(c_u, G^E(1^u, r), E(G^E(1^u, r), x_1, r_1), E(G^E(1^u, r), x_0, r_0))$ $Circ(c_u, G^E(1^u, r), E(G^E(1^u, r), x', r'), E(G^E(1^u, r), x_0, r_0))$ $Circ(c_u, G^E(1^u, r), E(G^E(1^u, r), x', r'), E(G^E(1^u, r), x_1, r_1))$ $Circ(c_u, G^E(1^u, r), E(G^E(1^u, r), x_0, r_0), E(G^E(1^u, r), x_1, r_1))$

The target is to formalise this proof.

19

 $\begin{array}{l} \underline{Algebra}\\ \overline{Types:} \ \mathbf{b} \subset \mathbf{p}^0 \subset \mathbf{p}^1 \subset \mathbf{p}^2 \subset \ldots\\ \end{array}$ Denotation of Types : $\begin{array}{l} D_u(\mathbf{b}) = 2, \ D_u(\mathbf{p}^0) = 2^{< u}, \ D_u(\mathbf{p}^1) = 2^{< p(u)},\\ D_u(\mathbf{p}^2) = 2^{< p(p(u))}, \ D_u(\mathbf{p}^3) = 2^{< p(p(p(u)))}, \ldots,\\ D_u(\mathbf{p}^n) = 2^{< p^n(u)}, \ldots \end{array}$ where u is the security parameter and p is the bounding polynomial.

Bivalent algebra

Constants and function symbols:

 $0: \mathbf{b}, \ 1: \mathbf{b}, \ \sqcap: \mathbf{b} \times \mathbf{b} \to \mathbf{b}, \ \oplus: \mathbf{b} \times \mathbf{b} \to \mathbf{b},$

cond : $\mathbf{b} \times \tau \times \tau \rightarrow \tau$.

Rules:

 $(0, 1, \Box, \oplus)$ is a Boolean ring. (Bivalance) $1 \neq 0$. Either t = 0 or t = 1 for t : b. cond(1, t, u) = t, cond(0, t, u) = u.

21

 $\begin{array}{l} \underline{\text{Cryptographic algebra}}\\ \text{Function symbols:}\\ \mathbf{ge}, \mathbf{gd}: \mathbf{p}^0 \times \mathbf{p}^1 \rightarrow \mathbf{p}^1\\ \mathbf{enc}: \mathbf{p}^1 \times \mathbf{p}^n \times \mathbf{p}^{n+1} \rightarrow \mathbf{p}^{n+1}, \ \mathbf{dec}: \mathbf{p}^1 \times \mathbf{p}^{n+1} \rightarrow \mathbf{p}^n\\ \text{Rules: } \mathbf{dec}(\mathbf{gd}(x, y), \mathbf{enc}(\mathbf{ge}(x, y), m, n)) = m \end{array}$

 $\begin{array}{l} \underline{\operatorname{Circuit} \operatorname{Algebra}} \\ \text{Function symbol: } \operatorname{circ}: \tau \times \ldots \times \tau' \to \mathbf{b} \\ \text{Semantics: } \llbracket \operatorname{circ}(c, x_1, \ldots, x_n) \rrbracket = \operatorname{Circ}(c, x_1 x_2 \ldots x_n) \\ \text{Rules:} \\ - \operatorname{For} c: \mathbf{p}^n, \text{ there is } c': \mathbf{p}^{n+1} \text{ depending only on } c \text{ such that} \\ \operatorname{circ}(c', x_1, \ldots, x_n) = \operatorname{circ}(c, x_{i(1)}, \ldots, x_{i(n)}) \\ \text{where } (i(1), \ldots, i(n)) \text{ is a permutation of } (1, \ldots, n) \\ - \operatorname{For} c, y: \mathbf{p}^n, \text{ there is } c': \mathbf{p}^{n+1} \text{ depending only on } c, y \text{ and } r \\ \text{such that} \\ \operatorname{circ}(c', k, x) = \operatorname{circ}(c, k, x, \operatorname{enc}(k, y, r)) \end{array}$

23

Syntax

Variables: $V^{ au}$ for each type au, $V = \coprod_{ au} V^{ au}$: a finite set.

All variable are regarded as probabilistic variables.

A non-probabilistic variable x is regarded as a probabilisitic variable such that $\Pr[x = c] = 1$ for some constant value c. If the value of a variable x is determined to be 1 or 0 in a nondeterministic process, then, we regard that either $\Pr[x = 1] = 1$ or $\Pr[x = 0] = 1$, which is determined nondeterministically Function symbols: The constants and function symbols of algebras. Terms: constucted with variables and function symbols. Unmodalled formulae: $F^U ::= t = u |\neg F^U| F^U \wedge F^U |\forall v F^U$ Modalled formulae:

 $F^M ::= \mathsf{N}(t;t_1,t_2,...,t_n) | \oslash F^U | \Box F^U | \neg F^M | F^M \wedge F^M | orall v F^M$ where t and u are terms and $v \in V$.

 $N(t; t_1, t_2, ..., t_n)$: The proabilistic distributions of t is even and independent to those of $t_1, t_2, ..., t_n$. $\oslash F$: The diffenece between 1/2 and the probability of F is negligible. $\Box F$: The probability of F is equal to 1.

25

Abbrebiations:
$$\begin{split} t \sqcup u &\equiv t \oplus u \oplus t \sqcap u, \ \sim t \equiv 1 \oplus t, \\ \mathsf{N}(t_1, t_2, ..., t_n; t_1', t_2', ..., t_m') &\equiv \\ \mathsf{N}(t_1; t_2, ..., t_n, t_1', ..., t_m') \land \mathsf{N}(t_2, t_3, ..., t_n; t_1', ..., t_m') \\ &(n \geq 2), \end{split}$$
 $F \supset G \equiv \neg (F \land \neg G), \ F \lor G \equiv \neg F \supset G, \\ F \supset C \equiv (F \supset G) \land (G \supset F), \\ \exists xF \equiv \neg \forall x \neg F \end{split}$ The strength of connetive powers is in the order: $\neg, \forall, \exists, \oslash, \Box, \land, \lor, \supset, \supset \subset. \end{split}$

Semantics
An asignment
$$w$$
 and a distribution μ
of parameter u and bounding polynomial p
For a type τ , $D_u(\tau)$ is defined as: $D_u(\mathbf{b}) = 2$, $D_u(\mathbf{p}^n) = 2^{< p^n(u)}$.
 $w \in W_u = \{w : \prod_{\tau} V^{\tau} \to D_u(\tau)\}$. Note that W_u is finite.
 $\mu : W_u \to [0, 1], \ \sum_{w \in W_u} \mu(w) = 1$
We extend the domain of μ into the power set of W_u as:
 $\mu(E) = \sum_{w \in E} \mu(w)$ for $E \subset W_u$.

A model M of polynomial p is an infinite sequence $M = (\mu_1, \mu_2, \mu_3, ...)$ where μ_i is a distribution of parameter u_i and bounding polynomial pfor an incleasing sequence of integers $u_1 < u_2 < u_3 < ...$

For
$$v \in V^{\tau}$$
, $e \in D_u(\tau)$, and $w \in W_u$,
the notation $w[e/v] \in W_u$ is defined as
 $w[e/v](v) = e$ and $w[e/v](v') = w(v')$ for $v' \neq v$
For $v \in V$ and $w, w' \in W_u$, the relation $w \sim_v w'$ is defined as
 $w = w'[w(v)/v]$
For $v \in V^{\tau}$ and $\mu, \mu' : W_u \to [0, 1]$,
the relation $\mu \sim_v \mu'$ is defined as, for any $w \in D_u$,
 $\sum_{e \in D_u(\tau)} \mu(w[e/v]) = \sum_{e \in D_u(\tau)} \mu'(w[e/v])$
that is, $\mu(\{\omega | \omega \sim_v w\}) = \mu'(\{\omega | \omega \sim_v w\})$

 \sim_v denotes the relation that two behave the same except for v

29

For
$$M=(\mu_1,\mu_2,...)$$
 and $M'=(\mu'_1,\mu'_2,...)$
 $M\sim_v M'\iff$ for any $i,\,\mu_i\sim_v\mu_i$

<u>Lemma</u> \sim_v is an equivalence relation. <u>Lemma</u> For $v, v' \in V$ and $\mu_1, \mu_2 : W_u \rightarrow [0, 1]$, if $\mu_1 \sim_v \mu_3 \sim_{v'} \mu_2$ for some μ_3 , then $\mu_1 \sim_{v'} \mu_4 \sim_v \mu_2$ for some μ_4 . Put an encryption scheme $S = (G^E, G^D, E, D)$ Function sysmbols **ge**, **gd**, **enc** and **dec** are interpreted into G^E , G^D , E and D. Other constants and function symbols are interpreted in the standard way.

For a term t: au and $w\in D_u$, the interpretation $[\![t]\!](w)\in D_u(au)$ is defined in the usual way.

31

The interpretation of an unmodalled formula $w \models F^U$ is defined as follows, where $w \in W_u = \prod_{\tau} V^{\tau} \rightarrow D_u(\tau)$ $w \models t = t' \iff [t](w) = [t'](w)$ $w \models \neg F \iff w \nvDash F$ $w \models F \land G \iff w \models F \& w \models G$ $w \models \forall xF \iff w' \models F$ for any $w' \sim_x w$ The interpretation of a modalled formula $M \models F^M$ is defined as follows, where $M = (\mu_1, \mu_2, ...)$ is a model: $M \models \neg F \iff M \not\models F$ $M \models F \land G \iff M \models F \& M \models G$ $M \models \forall xF \iff M' \models F$ for any $M' \sim_x M$

$$\begin{split} M &\models \mathsf{N}(t; t', t'', ...) \iff \\ \text{For any } j, \text{ the following holds:} \\ \text{Let } \tau, \tau', \tau''... \text{ be the types of } t, t', t'', \\ \text{For any } e \in D_{u_j}(\tau), e' \in D_{u_j}(\tau'), e'' \in D_{u_j}(\tau''), ..., \\ \mu_j(\{\omega \in W_{u_j} | \llbracket t \rrbracket(\omega) = e, \llbracket t' \rrbracket(\omega) = e', \llbracket t'' \rrbracket(\omega) = e'', ...\}) \\ &= (1/\# D_{u_j}(\tau)) \cdot \mu_j(\{\omega \in W_{u_j} | \llbracket t' \rrbracket(\omega) = e', \llbracket t'' \rrbracket(\omega) = e'', ...\}) \end{split}$$

$$egin{aligned} M \models \oslash F &\iff & \ ext{for any polynomial } q(\), \ ext{there is an integer } N ext{ such that,} \ ext{for any } j \geq N, \ & \left| \mu_j(\{w \in W_{u_j} | w \models F\}) - 1/2
ight| < 1/q(j). \end{aligned}$$

 $egin{aligned} M \models \Box F \iff & \ ext{for any } j ext{ and any } w \in W_{u_j}, w \models F. \end{aligned}$

 $S\models F\iff$

 $M \models F$ for any M

where the function symbols ge, gd, enc, dec are interpreted into S.

<u>Axioms</u>

Detachment: $F \supset G, \ F \vdash G$. Generalisation: $F \vdash \forall xF$. Substitution: $t = t' \vdash F^M[t/x] \supset F^M[t'/x]$. Necessity: $F^U \vdash \Box F^U$. Variable generation: $\mathbf{N}(x; x_1, x_2, ..., x_n) \supset F^M \vdash F^M$, where all the probabilistic variables in F^M are listed in $x_1, x_2, ..., x_n$.

37

Initial formulae: Tautologyes, Axioms on equation: t = t, $t = t' \supset F^U[t/x] \supset F^U[t'/x]$, Axioms on quantification: $\forall x(F \supset G) \supset F \supset \forall xG$, where x does not appear in F, $\forall xF \supset F[t/x]$. Initial formulae:

Rules of algebras, where we formalise informal rules such as bivalence.

Dependencies are descripted as follows:

$$\begin{split} \mathsf{N}(y_1, y_2, ..., y_m; c, x_1, x_2, ..., x_n, z_1, z_2, ..., z_l) \supset \\ \exists c'. \ \mathsf{N}(y_1, y_2, ..., y_m; c, c', x_1, x_2, ..., x_m, z_1, z_2, ..., z_l) \\ & \land \mathsf{circ}(c, x_1, x_2, ..., x_n) = \mathsf{circ}(c', x_{i_1}, x_{i_2}, ..., x_{i_n}) \\ \end{split}$$

$$\end{split}$$
Where $(i_1, i_2, ..., i_n)$ is a permutation of $(1, 2, ..., n)$

39

Initial formulae:
And that,

$$N(z_1, ..., z_l; c, x_1, ..., x_m, y_1, ..., y_n, r, z'_1, ..., z'_k) \supset$$

 $\exists c'. N(z_1, ..., z_l; c, c', x_1, ..., x_m, y_1, ..., y_n, r, z'_1, ..., z'_k)$
 $\land \forall kx. \operatorname{circ}(c', x_1, ..., x_m) = \operatorname{circ}(c, x_1, ..., x_m, y_1, ..., y_n)$
 $N(z_1, z_2, ..., z_l; c, y, r, z'_1, z'_2, ..., z'_m) \supset$
 $\exists c'. N(z_1, z_2, ..., z_l; c, c', y, r, z'_1, z'_2, ..., z'_m)$

 $\wedge \, \forall kx. \ \mathsf{circ}(c',k,x) = \mathsf{circ}(c,k,x,\mathsf{enc}(k,y,r))$

Initial formulae:

Rules on independence:

$$\begin{split} \mathsf{N}(t;t_{1},t_{2},...,t_{n}) \supset \mathsf{N}(t;t_{i_{1}},t_{i_{2}},...,t_{i_{n}}), \\ & \text{where } \{i_{1},i_{2},...,i_{n}\} \subset \{1,2,...,n\}. \\ \mathsf{N}(t;t',t_{1},t_{2},...,t_{n}) \supset \mathsf{N}(t';t_{1},t_{2},...,t_{n}) \supset \\ & \mathsf{N}(t';t,t_{1},t_{2},...,t_{n}) \end{split}$$

41

Initial formulae: Rules on Probability: $\Box(F \supset G) \supset \Box F \supset \Box G$ $\Box(F \supset G) \supset \oslash F \supset \oslash G$ Calculation of probability: $N(i; t, u) \supset$ $(\oslash 1 = cond(i, t, u) \supset \oslash 1 = cond(i, t \sqcup u, t \sqcap u)),$ $N(i; t) \supset N(i; u) \supset \oslash 1 = u \supset$ $(\oslash 1 = t \supset C \oslash 1 = cond(i, t, u)).$

Soundness

This axiomatic system is sound for the semantices.

It seems that this system is incomplete, becasue the system mentions nothing on the behaviour of **circ(**). The system which proves useful theorems is useful, even if it is not complete.

43

The follwoings are equivalent:

- $S = (G^E, G^D, E, D)$ has indistinguishable encryption.

 $\begin{array}{l} -S \models \mathsf{N}(i,r_1,r_0;c,x_1,x_0) \supset \\ & \oslash i = \mathsf{circ}(c,\mathsf{ge}(1^u,r),\mathsf{cond}(i,\mathsf{enc}(\mathsf{ge}(1^u,r),x_1,r_1),\\ & \mathsf{enc}(\mathsf{ge}(1^u,r),x_0,r_0)) \\ & \mathsf{where}\; x_1,x_0 \in V^{\mathsf{p}^1},\; i \in V^{\mathsf{b}},\; r,r_1,r_0 \in V^{\mathsf{p}^2},\; \mathsf{and}\; c \in V^{\mathsf{p}^n}. \end{array}$ We name this formula IND.

The indistinguihability supporting Kawamoto protocol's privacy is formalised as the following:

$$\begin{split} \mathsf{N}(i, r, r_1, r_0; c, x_1, x_0) \supset \oslash \ i &= \mathsf{circ}(c, \mathsf{ge}(1^u, r), \\ &\quad \mathsf{cond}(i, \mathsf{enc}(\mathsf{ge}(1^u, r), x_1, r_1), \mathsf{enc}(\mathsf{ge}(1^u, r), x_0, r_0))), \\ &\quad \mathsf{cond}(i, \mathsf{enc}(\mathsf{ge}(1^u, r), x_0, r_0), \mathsf{enc}(\mathsf{ge}(1^u, r), x_1, r_1))) \) \\ &\quad \mathsf{where} \ x_1, x_0, c \in V^{\mathsf{p}^1}, \ i \in V^{\mathsf{b}}, \ r, r_1, r_0 \in V^{\mathsf{p}^2}. \end{split}$$
We name this formula IND-Priv.

We will show that we can derive **IND-Priv** form **IND** in our axiomatic system.

This equivaence is derivable:

 $i = \operatorname{cond}(i, t, u) \supset 1 = \operatorname{cond}(i, t, \sim u).$

Therefore, the target formula is:

$$\begin{split} \mathsf{N}(i,c;r,r_1,r_0) \supset &\oslash \ 1 = \mathsf{cond}(i,\\ \mathsf{circ}(c,\mathsf{ge}(1^u,r),\mathsf{enc}(\mathsf{ge}(1^u,r),x_1,r_1),\mathsf{enc}(\mathsf{ge}(1^u,r),x_0,r_0)),\\ &\sim \mathsf{circ}(c,\mathsf{ge}(1^u,r),\mathsf{enc}(\mathsf{ge}(1^u,r),x_0,r_0),\mathsf{enc}(\mathsf{ge}(1^u,r),x_1,r_1))) \end{split}$$

47

 $\mathsf{N}(i;t,u) \supset \oslash 1 = \mathsf{cond}(i,t,{\sim}u)$ denotes that t is indistinguishable to u.

This relation

 $\mathsf{N}(i;t,u) \supset \oslash i = \mathsf{cond}(i,t,\sim u)$

between t and u is a equvalence relation, thus transitive.

As preparation, this is devivable: $- \mathsf{N}(j; i, t_1, t_2, t_3) \land \oslash j = 1$ $\land \oslash 1 = \mathsf{cond}(i, t_1, \sim t_2) \land \oslash 1 = \mathsf{cond}(i, t_2, \sim t_3)$ $\supset \oslash 1 = \mathsf{cond}(j, \mathsf{cond}(i, t_1, \sim t_2), \mathsf{cond}(i, t_2, \sim t_3))$

49

These equations are derivable: $-\operatorname{cond}(i, t_1, \sim t_2) \sqcup \operatorname{cond}(i, t_2, \sim t_3) = \operatorname{cond}(i, t_1 \sqcup t_2, \sim t_2 \sqcup \sim t_3)$ $= \operatorname{cond}(i, t_1, \sim t_3) \sqcup \operatorname{cond}(i, t_2, \sim t_3)$ $- \operatorname{cond}(i, t_1, \sim t_2) \sqcap \operatorname{cond}(i, t_2, \sim t_3) = \operatorname{cond}(i, t_1 \sqcap t_2, \sim t_2 \sqcap \sim t_3)$ $= \operatorname{cond}(i, t_1, \sim t_3) \sqcap \operatorname{cond}(i, t_2, \sim t_2)$ Therefore, this is derivable: $- \operatorname{N}(j; i, t_1, t_2, t_3) \land \oslash j = 1 \supset$ $(\oslash 1 = \operatorname{cond}(j, \operatorname{cond}(i, t_1, \sim t_2), \operatorname{cond}(i, t_2, \sim t_3))$ $\supset \bigcirc 1 = \operatorname{cond}(j, \operatorname{cond}(i, t_1, \sim t_3), \operatorname{cond}(i, t_2, \sim t_2)))$

On the other hand, these are derivable:

$$- N(i; t_2) \land \oslash i = 1 \supset \oslash 1 = \operatorname{cond}(i, 1, 0)$$

$$- N(i; t_2) \land \oslash i = 1 \supset$$

$$(\oslash 1 = \operatorname{cond}(i, 1, 0) \supset \bigcirc 0 1 = \operatorname{cond}(i, t_2, \sim t_2))$$
Therefore, these are derivable:

$$- N(i; t_2) \land \oslash i = 1 \supset \oslash 1 = \operatorname{cond}(i, t_2, \sim t_2)$$

$$- N(i, j; t_1, t_2, t_3) \land \oslash i = 1 \land \oslash j = 1 \supset$$

$$(\oslash 1 = \operatorname{cond}(i, t_1, \sim t_3)$$

$$\supset \bigcirc 1 = \operatorname{cond}(j, \operatorname{cond}(i, t_1, \sim t_3), \operatorname{cond}(i, t_2, \sim t_2)))$$

As the consequence, these are derivable:

$$- \mathbf{N}(i, j; t_1, t_2, t_3) \land \oslash i = 1 \land \oslash j = 1 \supset (\oslash 1 = \operatorname{cond}(i, t_1, \sim t_3))) \bigcirc (\oslash 1 = \operatorname{cond}(j, \operatorname{cond}(i, t_1, \sim t_2), \operatorname{cond}(i, t_2, \sim t_3)))) = - \mathbf{N}(j, i; t_1, t_2, t_3) \land \oslash i = 1 \land \oslash j = 1 \land \oslash i = \operatorname{cond}(i, t_1, \sim t_2) \land \oslash 1 = \operatorname{cond}(i, t_2, \sim t_3) \supset \oslash 1 = \operatorname{cond}(i, t_1, \sim t_3)$$
Therefore, by eliminating the variable j :

$$- \mathbf{N}(i; t_1, t_2, t_3) \land \oslash i = 1 \land \oslash 1 = \operatorname{cond}(i, t_1, \sim t_2) \land \oslash 1 = \operatorname{cond}(i, t_1, \sim t_3)$$

$$\Box \oslash 1 = \operatorname{cond}(i, t_1, \sim t_2) \land \oslash 1 = \operatorname{cond}(i, t_2, \sim t_3)$$

$$\Box \oslash 1 = \operatorname{cond}(i, t_1, \sim t_2) \land \oslash 1 = \operatorname{cond}(i, t_1, \sim t_3)$$

$$\Box \oslash 1 = \operatorname{cond}(i, t_1, \sim t_3)$$

We will show the indistinguishability of each line to the next:

1.
$$\operatorname{circ}(c, \operatorname{ge}(1^u, r), \operatorname{enc}(\operatorname{ge}(1^u, r), x_1, r_1), \operatorname{enc}(\operatorname{ge}(1^u, r), x_0, r_0))$$

2.
$$\operatorname{circ}(c, \operatorname{ge}(1^u, r), \operatorname{enc}(\operatorname{ge}(1^u, r), x', r'), \operatorname{enc}(\operatorname{ge}(1^u, r), x_0, r_0)))$$

3.
$$\operatorname{circ}(c, \operatorname{ge}(1^u, r), \operatorname{enc}(\operatorname{ge}(1^u, r), x', r'), \operatorname{enc}(\operatorname{ge}(1^u, r), x_1, r_1)))$$

4.
$$\operatorname{circ}(c, \operatorname{ge}(1^u, r), \operatorname{enc}(\operatorname{ge}(1^u, r), x_0, r_0), \operatorname{enc}(\operatorname{ge}(1^u, r), x_1, r_1)))$$

It is suffient to show the first.

We have

$$\exists c'.\forall kxy.\mathsf{N}(\vec{z};c,x,y,\vec{z}') \supset \mathsf{N}(\vec{z};c,c',k,x,y,\vec{z}') \land \\ \Box \operatorname{circ}(c',k,x) = \operatorname{circ}(c,k,x,\operatorname{enc}(k,y,r))$$
Hence

$$\exists c'.\forall x_1x'r_1r'.\mathsf{N}(r,r_1,r';c',x_1,x_0,x',r_0) \supset \\ \mathsf{N}(r,r_1,r';c',x_1,x_0,x',r_0) \\ \land \Box \operatorname{circ}(c',\operatorname{ge}(1^u,r),\operatorname{enc}(\operatorname{ge}(1^u,r),x_1,r_1)) \\ = \operatorname{circ}(c,\operatorname{ge}(1^u,r),\operatorname{enc}(\operatorname{ge}(1^u,r),x_1,r_1),\operatorname{enc}(\operatorname{ge}(1^u,r),x_0,r_0))) \\ \land \Box \operatorname{circ}(c',\operatorname{ge}(1^u,r),\operatorname{enc}(\operatorname{ge}(1^u,r),x',r')) \\ = \operatorname{circ}(c,\operatorname{ge}(1^u,r),\operatorname{enc}(\operatorname{ge}(1^u,r),x',r'),\operatorname{enc}(\operatorname{ge}(1^u,r),x_0,r_0))$$

Hence
∃
$$c'$$
.∀ $x_1x'r_1r'$.N $(r, r_1, r'; c', x_1, x_0, x', r_0)$ ⊃
N $(c'; x_1, x', r_1, r', r)$
∧ □ cond $(i, circ(c, enc(ge(1^u, r), x_1, r_1), enc(ge(1^u, r), x_0, r_0)))$
~ $circ(c, enc(ge(1^u, r), x', r'), enc(ge(1^u, r), x_0, r_0)))$
= cond $(i, circ(c', ge(1^u, r), enc(ge(1^u, r), x_1, r_1)),$
~ $circ(c', ge(1^u, r), enc(ge(1^u, r), x', r')))$

By IND,

$$N(r, r_1, r'; c'', x_1, x') \supset$$

 $\oslash 1 = cond(i, circ(c'', ge(1^u, r), enc(ge(1^u, r), x_1, r_1)),$
 $\sim circ(c', ge(1^u, r), enc(ge(1^u, r), x', r'))$

Therefore

$$egin{aligned} \mathsf{N}(r,r_1,r';c',x_1,x_0,x',r_0) \supset \ &\oslash 1=\mathsf{cond}(i,\mathsf{circ}(c',\mathsf{ge}(1^u,r),\mathsf{enc}(\mathsf{ge}(1^u,r),x_1,r_1),x_0,r_0), \ &\sim\mathsf{circ}(c',\mathsf{ge}(1^u,r),\mathsf{enc}(\mathsf{ge}(1^u,r),x',r'),x_0,r_0) \) \end{aligned}$$

```
Therefore

N(r, r_1, r'; c, x_1, x_0, x', r_0) \land \oslash 1 =

cond(i,

circ(c, ge(1^u, r), enc(ge(1^u, r), x_1, r_1), enc(ge(1^u, r), x_0, r_0)),

\sim circ(c, ge(1^u, r), enc(ge(1^u, r), x', r'), enc(ge(1^u, r), x_0, r_0)))

)
```

<u>Conclusion</u>

We formalised the inferences on negligibly small probability. Especially, we formalise trhe dependency of variables by the predicate N(;).