
Logical system with negligible probability

Takeuti Izumi

7 March 2015

1

Formalisation of proofs

– Academic significance

Not to prove a new theorem

To analyse the proof

To clarify the essence of inferences

– Industrial significance

Not to provide a new cryptgraphic function

To make the proof less mistaken and more dependable

To make the proof machine-checkable

To enable the proof to be circulated in non-mathematicians

2

The notion of ‘negligibly small probability’ often occurs

in arguments of cryptograhpy.

For instance:

1. The difference of the probabilities of X and Y is negligibly small.

2. The difference of the probabilities of Y and Z is also negligibly small.

3. Therefore, the difference of the probabilities of X and Z is also

negligibly small.

3

Formal definition of negligibly small probability:

A value ϵ depending on the security parameter is negligibly small iff

for any positive polynomial p(), there is a number N such that

for any security parameter n > N , it holds ϵ < 1/p(n).

4

The argument with negligibly small probability is often like the following:

1. Put an arbitray polynomial p().

2. |Pr[X] − Pr[Y]| < 1/2p(n) for large n.

3. Also |Pr[Y] − Pr[Z]| < 1/2p(n) for large n.

4. Hence |Pr[X] − Pr[Z]| < 1/p(n) for large n.

5. Therefore the difference of probabilities |Pr[X] − Pr[Z]| is
negligibly small.

This argument uses a method of mathematical analysis.

5

A method of mathematical analysis is not easy.

It sometimes induces mistakes in proofs.

A method of symbolic processing is better than it.

6

Negligible probability ofren appear in the following form:

‘|Pr[P] − 1/2| is negligibly small.’

We regard this as a modality for P .

We propose a formal logical system with this modality,

and prove a useful theorem in the formal system.

Aim: To propose a logical system with negligible probability

which proves privacy in Kawamoto voting protocol

7

All the other systems deal with only rigid probabilities.

Thus they can formalise the discussion below:

1. Pr[X] is exactly equal to Pr[Y].

2. Pr[Y] is exactly equal to Pr[Z].

3. Therefore, Pr[X] is exactly equal to Pr[Z].

On the other hand, they cannot formalise the following discussion:

1. Pr[X] is close to Pr[Y].

2. Pr[Y] is close to Pr[Z].

3. Therefore, Pr[X] is close to Pr[Z].

Our system can formalise this discussion.

8

2 = {0, 1}, 2∗ = ∪∞
n=02

n, 2<n = {x ∈ 2∗| |x| < n},
() ∈ 20 denotes the empty word.

1n ∈ 2n denots a sequence of 1 of length n.

0n ∈ 2n denots a sequence of 0 of length n.

x ∈ 2m ⊂ 2<n is encoded as ϕn(x) = x 1 0n−m−1 ∈ 2n

y ∈ 2n is decoded as ψn(y) = x ∈ 2m for y = x 1 0n−m−1,

and ψn(y) = () for y = 0n

9

For a PTIME function f over 2∗, the following holds.

There is polynomials p and q such that,

for each positive integer n,

there is a sequnce of logical circuites C1, C2,, Cq(n) such that,

the size of Ci is less than p(n) for each i = 1, 2, ..., q(n),

and

for any x ∈ 2<n,

f(x) = ψq(n)(C1(ϕn(x))C2(ϕn(x))...Cq(n)(ϕn(x)) ∈ 2<q(n)

10

Circn1,n2,...,nk
(...) is an emulator of circuit, that is:

Let C be a circuit, and c ∈ 2∗ be the code of C.

For any x1 ∈ 2<n1, x2 ∈ 2<n2, ..., xk ∈ 2<nk,

Circn1,n2,...,nk
(c, x1, x2, ..., xk) = C(ϕn1

(x1)ϕn2
(x2)...ϕnk

(xk))

The code c of a circuit C is as large as a polynomial of the size of C.

Circ...() is a PTIME function.

There are PTIME functions f, f ′, f ′′ such that

Circ...(f(c), x, y) = Circ...(c, y),

Circ...(f
′(c, y), x) = Circ...(c, x, y).

Circ...(f
′′(c), x, y) = Circ...(c, y, x).

11

Encryption Scheme (GE, GD, E,D):

– GE(x, y) : encryption key of seed x and nonce y.

– GD(x, y) : the decryption key for GE(x, y).

– E(x, y, z) : encryption function with key x, message y and nonce z.

– D(x, y) : decryption function with key x from encrypted message y.

GE, GD, E and D are functions over 2∗ such that

D(GD(s, r), E(GE(s, r),m, r′)) = m.

When nonces are regarded as probabilistic variables,

these GE, GD, E and D are regarded as probabilistic algorithm.

12

An encryption scheme (GE, GD, E,D) is

a Encryption Scheme with Bound p iff

– All of GE, GD, E,D are PTIME functions over 2∗.

– p is a polynomial.

– The computation times of GE(x, y), GD(x, y) and D(x, y)

are bounded by p(|x|) independently to y.

– The computation time of E(x, y, z) is bounded by p(max(|x|, |y|))
independently to z.

13

– There is a PTIME function f over 2∗ such that

the computation time of f(x, y, z) is bounded by

p(max(|x|, |y|, |z|)),
and that

for any c ∈ 2∗, s,m, r, r′ ∈ 2<n, x ∈ 2<p(n),

Circn,p(n),p2(n),p2(n)(c,G
E(s, r), E(GE(s, r),m, r′), x)

= Circp(n),p2(n)(f(c,m, r
′), GE(s, r), x)

14

An encription scheme (GE, GD, E,D) with bound p

has indistinguishable encryption, or is ciphertext-indistinguishable,

iff

for any positive polynomials q, q′, q′′ where q′(n) ≥ n,

for any sequence {c1, c2, c3, ...} where |cn| < q′′(n),

there is a number N such that,

for any u > N , for any x1, x0 ∈ 2<q
′(u),

#{(i, r, r′) ∈ 2 × 2<p(u) × 2<p(q
′(u))|

i = Circ(cu, G
E(1u, r), E(GE(1u, r), xi, r

′))}
< (1/2 + 1/q(u)) · #(2 × 2<p(u) × 2<p(q

′(u)))

15

Kawamoto Voting Protocol
A

eA1 = E(kV 1, sA1, nA1) ↙ ↘ eA2 = E(kV 2, sA2, nA2)

sA1 = D(k−1
V 1, eA1)

e1 = E(kC, ⟨v1, sA1⟩, n1)
V1 V2

sA2 = D(k−1
V 2, eA2)

e2 = E(kC, ⟨v2, sA2⟩, n2)

e′1 = E(kMIX, e1, n
′
1) ↘ ↙ e′2 = E(kMIX, e2, n

′
2,)

MIX

e1 = D(k−1
MIX, e

′
1) ↓↓ e2 = D(k−1

MIX, e
′
2)

C

v1 = left(D(k−1
C , e1)) ↓↓ v2 = left(D(k−1

C , e2))

BB

16

Suppose that the intruder can look at both encrypted messages,

but cannot send any message of identity fraud.

The privacy of that votes is provided by the indistingushability

of E(kMIX, e1, n
′
1) from E(kMIX, e2, n

′
2).

17

That is formalised into that:

for any positive polynomials q, q′, q′′ where q′(n) ≥ n,

for any sequence {c1, c2, c3, ...} where |cn| < q′′(n),

there is a number N such that,

for any u > N , for any x1, x0 ∈ 2<q
′(u),

#{(i, r, r0, r1) ∈ 2 × 2<p(u) × (2<p(q
′(u)))2|

i = Circ(cu, G
E(1u, r),

E(GE(1u, r), xi, ri), E(GE(1u, r), x1−i, r1−i))}
< (1/2 + 1/q(u)) · #(2 × 2<p(u) × (2<p(q

′(u)))2)

18

Informal proof — Hybid argument

Each line is indisdinguishable to the next:

Circ(cu, G
E(1u, r), E(GE(1u, r), x1, r1), E(GE(1u, r), x0, r0))

Circ(cu, G
E(1u, r), E(GE(1u, r), x′, r′), E(GE(1u, r), x0, r0))

Circ(cu, G
E(1u, r), E(GE(1u, r), x′, r′), E(GE(1u, r), x1, r1))

Circ(cu, G
E(1u, r), E(GE(1u, r), x0, r0), E(GE(1u, r), x1, r1))

The target is to formalise this proof.

19

Algebra

Types: b ⊂ p0 ⊂ p1 ⊂ p2 ⊂ ...

Denotation of Types :

Du(b) = 2, Du(p0) = 2<u, Du(p1) = 2<p(u),

Du(p2) = 2<p(p(u)), Du(p3) = 2<p(p(p(u))), ...,

Du(pn) = 2<p
n(u), ...

where u is the security parameter and p is the bounding polynomial.

20

Bivalent algebra

Constants and function symbols:

0 : b, 1 : b, ⊓ : b × b → b, ⊕ : b × b → b,

cond : b × τ × τ → τ .

Rules:

(0, 1, ⊓, ⊕) is a Boolean ring.

(Bivalance) 1 ̸= 0. Either t = 0 or t = 1 for t : b.

cond(1, t, u) = t, cond(0, t, u) = u.

21

Cryptographic algebra

Function symbols:

ge, gd : p0 × p1 → p1

enc : p1 × pn × pn+1 → pn+1, dec : p1 × pn+1 → pn

Rules: dec(gd(x, y), enc(ge(x, y),m, n)) = m

22

Circuit Algebra

Function symbol: circ : τ × ...× τ ′ → b

Semantics: [[circ(c, x1, ..., xn)]] = Circ(c, x1x2...xn)

Rules:

– For c : pn, there is c′ : pn+1 depending only on c such that

circ(c′, x1, .., xn) = circ(c, xi(1), ..., xi(n))

where (i(1), ..., i(n)) is a permutation of (1, ..., n)

– For c, y : pn, there is c′ : pn+1 depending only on c, y and r

such that

circ(c′, k, x) = circ(c, k, x, enc(k, y, r))

23

Syntax

Variables: V τ for each type τ , V =
⨿
τ V

τ : a finite set.

All variable are regarded as probabilistic variables.

A non-probabilistic variable x is regarded as a probabilisitic variable

such that Pr[x = c] = 1 for some constant value c.

If the value of a variable x is determined to be 1 or 0

in a nondeterministic process,

then, we regard that either Pr[x = 1] = 1 or Pr[x = 0] = 1,

which is determined nondeterministically

24

Function symbols: The constants and function symbols of algebras.

Terms: constucted with variables and functoin symbols.

Unmodalled formulae: FU ::= t = u|¬FU |FU ∧ FU |∀vFU

Modalled formulae:

FM ::= N(t; t1, t2, ..., tn)|⊘FU |2FU |¬FM |FM ∧ FM |∀vFM

where t and u are terms and v ∈ V .

N(t; t1, t2, ..., tn): The proabilistic distributions of t is even

and independent to those of t1, t2, ..., tn .

⊘F : The diffenece between 1/2 and the probability of F is negligible.

2F : The probability of F is equal to 1.

25

Abbrebiations:

t ⊔ u ≡ t⊕ u⊕ t ⊓ u, ∼t ≡ 1 ⊕ t,

N(t1, t2, ..., tn; t
′
1, t

′
2, ..., t

′
m) ≡

N(t1; t2, ..., tn, t
′
1, ..., t

′
m) ∧ N(t2, t3, ..., tn; t

′
1, ..., t

′
m)

(n ≥ 2),

F ⊃ G ≡ ¬(F ∧ ¬G), F ∨G ≡ ¬F ⊃ G,

F ⊃⊂ G ≡ (F ⊃ G) ∧ (G ⊃ F),

∃xF ≡ ¬∀x¬F
The strength of connetive powers is in the order:

¬, ∀, ∃, ⊘, 2, ∧, ∨, ⊃, ⊃⊂.

26

Semantics

An asignment w and a distribution µ

of parameter u and bounding polynomial p

For a type τ , Du(τ) is defined as: Du(b) = 2, Du(pn) = 2<p
n(u).

w ∈ Wu = {w :
∏
τ V

τ → Du(τ)}. Note that Wu is finite.

µ : Wu → [0, 1],
∑
w∈Wu

µ(w) = 1

We extend the domain of µ into the power set of Wu as:

µ(E) =
∑
w∈E µ(w) for E ⊂ Wu.

27

A model M of polynomial p is

an infinite sequence M = (µ1, µ2, µ3, ...)

where µi is a distribution of parameter ui and bounding polynomial p

for an incleasing sequence of integers u1 < u2 < u3 < ...

28

For v ∈ V τ , e ∈ Du(τ), and w ∈ Wu,

the notation w[e/v] ∈ Wu is defined as

w[e/v](v) = e and w[e/v](v′) = w(v′) for v′ ̸= v

For v ∈ V and w,w′ ∈ Wu, the relation w ∼v w
′ is defined as

w = w′[w(v)/v]

For v ∈ V τ and µ, µ′ : Wu → [0, 1],

the relation µ ∼v µ
′ is defined as, for any w ∈ Du,∑

e∈Du(τ) µ(w[e/v]) =
∑
e∈Du(τ) µ

′(w[e/v])

that is, µ({ω|ω ∼v w}) = µ′({ω|ω ∼v w})

∼v denotes the relation that two behave the same except for v

29

For M = (µ1, µ2, ...) and M ′ = (µ′
1, µ

′
2, ...)

M ∼v M
′ ⇐⇒ for any i, µi ∼v µi

Lemma ∼v is an equivalence relation.

Lemma For v, v′ ∈ V and µ1, µ2 : Wu → [0, 1],

if µ1 ∼v µ3 ∼v′ µ2 for some µ3,

then µ1 ∼v′ µ4 ∼v µ2 for some µ4.

30

Put an encryption scheme S = (GE, GD, E,D)

Function sysmbols ge, gd, enc and dec are interpreted

into GE, GD, E and D.

Other constants and function symbols are interpreted in the standard way.

For a term t : τ and w ∈ Du,

the interpretation [[t]](w) ∈ Du(τ) is defined in the usual way.

31

The interpretation of an unmodalled formula

w |= FU

is defined as follows, where w ∈ Wu =
∏
τ V

τ → Du(τ)

w |= t = t′ ⇐⇒ [[t]](w) = [[t′]](w)

w |= ¬F ⇐⇒ w ̸|= F

w |= F ∧G ⇐⇒ w |= F & w |= G

w |= ∀xF ⇐⇒ w′ |= F for any w′ ∼x w

32

The interpretation of a modalled formula

M |= FM

is defined as follows, where M = (µ1, µ2, ...) is a model:

M |= ¬F ⇐⇒ M ̸|= F

M |= F ∧G ⇐⇒ M |= F & M |= G

M |= ∀xF ⇐⇒ M ′ |= F for any M ′ ∼x M

33

M |= N(t; t′, t′′, ...) ⇐⇒
For any j, the following holds:

Let τ, τ ′, τ ′′... be the types of t, t′, t′′,

For any e ∈ Duj
(τ), e′ ∈ Duj

(τ ′), e′′ ∈ Duj
(τ ′′), ...,

µj({ω ∈ Wuj
|[[t]](ω) = e, [[t′]](ω) = e′, [[t′′]](ω) = e′′, ...})

= (1/#Duj
(τ)) · µj({ω ∈ Wuj

|[[t′]](ω) = e′, [[t′′]](ω) = e′′, ...})

34

M |= ⊘F ⇐⇒
for any polynomial q(),

there is an integer N such that,

for any j ≥ N ,∣∣∣∣µj({w ∈ Wuj
|w |= F}) − 1/2

∣∣∣∣ < 1/q(j).

M |= 2F ⇐⇒
for any j and any w ∈ Wuj

, w |= F .

35

S |= F ⇐⇒
M |= F for any M

where the function symbols ge, gd, enc, dec are interpreted into S.

36

Axioms

Detachment: F ⊃ G, F ⊢ G.

Generalisation: F ⊢ ∀xF .

Substitution: t = t′ ⊢ FM [t/x] ⊃ FM [t′/x].

Necessity: FU ⊢ 2FU .

Variable generation: N(x;x1, x2, ..., xn) ⊃ FM ⊢ FM ,

where all the probabilistic variables in FM are listed in x1, x2, ..., xn.

37

Initial formulae:

Tautologyes,

Axioms on equation: t = t,,

t = t′ ⊃ FU [t/x] ⊃ FU [t′/x],

Axioms on quantification:

∀x(F ⊃ G) ⊃ F ⊃ ∀xG, where x does not appear in F ,

∀xF ⊃ F [t/x].

38

Initial formulae:

Rules of algebras, where we formalise informal rules such as bivalence.

Dependencies are descripted as follows:

N(y1, y2, ..., ym; c, x1, x2, ..., xn, z1, z2, ..., zl) ⊃
∃c′. N(y1, y2, ..., ym; c, c

′, x1, x2, ..., xm, z1, z2, ..., zl)

∧ circ(c, x1, x2, ..., xn) = circ(c′, xi1, xi2, ..., xin)

Where (i1, i2, ..., in) is a permutation of (1, 2, ..., n)

39

Initial formulae:

And that,

N(z1, ..., zl; c, x1, ..., xm, y1, ..., yn, r, z
′
1, ..., z

′
k) ⊃

∃c′. N(z1, ..., zl; c, c
′, x1, ..., xm, y1, ..., yn, r, z

′
1, ..., z

′
k)

∧∀kx. circ(c′, x1, ..., xm) = circ(c, x1, ..., xm, y1, ..., yn)

N(z1, z2, ..., zl; c, y, r, z
′
1, z

′
2, ..., z

′
m) ⊃

∃c′. N(z1, z2, ..., zl; c, c
′, y, r, z′1, z

′
2, ..., z

′
m)

∧ ∀kx. circ(c′, k, x) = circ(c, k, x, enc(k, y, r))

40

Initial formulae:

Rules on independence:

N(t; t1, t2, ..., tn) ⊃ N(t; ti1, ti2, ..., tin),

where {i1, i2, ..., in} ⊂ {1, 2, ..., n}.
N(t; t′, t1, t2, ..., tn) ⊃ N(t′; t1, t2, ..., tn) ⊃

N(t′; t, t1, t2, ..., tn)

41

Initial formulae:

Rules on Probability:

2(F ⊃ G) ⊃ 2F ⊃ 2G

2(F ⊃⊂ G) ⊃ ⊘F ⊃ ⊘G
Calculation of probability:

N(i; t, u) ⊃
(⊘ 1 = cond(i, t, u) ⊃⊂ ⊘ 1 = cond(i, t ⊔ u, t ⊓ u)),

N(i; t) ⊃ N(i;u) ⊃ ⊘ 1 = u ⊃
(⊘ 1 = t ⊃⊂ ⊘ 1 = cond(i, t, u)).

42

Soundness

This axiomatic system is sound for the semantices.

It seems that this system is incomplete,

becasue the system mentions nothing on the behaviour of circ().

The system which proves useful theorems is useful,

even if it is not complete.

43

The proof of privacy of Kawamoto protocol

The follwoings are equivalent:

– S = (GE, GD, E,D) has indistinguishable encryption.

– S |= N(i, r1, r0; c, x1, x0) ⊃
⊘ i = circ(c, ge(1u, r), cond(i, enc(ge(1u, r), x1, r1),

enc(ge(1u, r), x0, r0))

where x1, x0 ∈ V p1, i ∈ V b, r, r1, r0 ∈ V p2, and c ∈ V pn.

We name this formula IND.

44

The indistinguihsbility supporting Kawamoto protocol’s privacy is

formalised as the following:

N(i, r, r1, r0; c, x1, x0) ⊃ ⊘ i = circ(c, ge(1u, r),

cond(i, enc(ge(1u, r), x1, r1), enc(ge(1u, r), x0, r0))),

cond(i, enc(ge(1u, r), x0, r0), enc(ge(1u, r), x1, r1))))

where x1, x0, c ∈ V p1, i ∈ V b, r, r1, r0 ∈ V p2.

We name this formula IND-Priv.

We will show that we can derive IND-Priv form IND

in our axiomatic system.

45

This equation is derivable:

circ(c, ge(1u, r),

cond(i, enc(ge(1u, r), x1, r1), enc(ge(1u, r), x0, r0))),

cond(i, enc(ge(1u, r), x0, r0), enc(ge(1u, r), x1, r1))))

= cond(i, circ(c, enc(ge(1u, r), x1, r1), enc(ge(1u, r), x0, r0)),

circ(c, enc(ge(1u, r), x0, r0), enc(ge(1u, r), x1, r1)))

Therefore, the target formula is:

N(i, r, r1, r0; c, x1, x0) ⊃ ⊘ i = cond(i,

circ(c, ge(1u, r), enc(ge(1u, r), x1, r1), enc(ge(1u, r), x0, r0)),

circ(c, ge(1u, r), enc(ge(1u, r), x0, r0), enc(ge(1u, r), x1, r1)))

46

This equivaence is derivable:

i = cond(i, t, u) ⊃⊂ 1 = cond(i, t,∼u).

Therefore, the target formula is:

N(i, c; r, r1, r0) ⊃ ⊘ 1 = cond(i,

circ(c, ge(1u, r), enc(ge(1u, r), x1, r1), enc(ge(1u, r), x0, r0)),

∼circ(c, ge(1u, r), enc(ge(1u, r), x0, r0), enc(ge(1u, r), x1, r1)))

47

N(i; t, u) ⊃ ⊘1 = cond(i, t,∼u)
denotes that t is indistinguishable to u.

This relation

N(i; t, u) ⊃ ⊘ i = cond(i, t,∼u)
between t and u is a equvalence relation, thus transitive.

48

As preparation, this is devivable:

– N(j; i, t1, t2, t3) ∧ ⊘ j = 1

∧ ⊘ 1 = cond(i, t1,∼t2) ∧ ⊘ 1 = cond(i, t2,∼t3)
⊃ ⊘ 1 = cond(j, cond(i, t1,∼t2), cond(i, t2,∼t3))

49

These equations are derivable:

– cond(i, t1,∼t2)⊔ cond(i, t2,∼t3) = cond(i, t1 ⊔ t2,∼t2 ⊔∼t3)
= cond(i, t1,∼t3) ⊔ cond(i, t2,∼t2)

– cond(i, t1,∼t2)⊓ cond(i, t2,∼t3) = cond(i, t1 ⊓ t2,∼t2 ⊓∼t3)
= cond(i, t1,∼t3) ⊓ cond(i, t2,∼t2)

Therefore, this is derivable:

– N(j; i, t1, t2, t3) ∧ ⊘ j = 1 ⊃
(⊘ 1 = cond(j, cond(i, t1,∼t2), cond(i, t2,∼t3))

⊃⊂ ⊘ 1 = cond(j, cond(i, t1,∼t3), cond(i, t2,∼t2)))

50

On the other hand, these are derivable:

– N(i; t2) ∧ ⊘ i = 1 ⊃ ⊘ 1 = cond(i, 1, 0)

– N(i; t2) ∧ ⊘ i = 1 ⊃
(⊘ 1 = cond(i, 1, 0) ⊃⊂ ⊘ 1 = cond(i, t2,∼t2))

Therefore, these are derivable:

– N(i; t2) ∧ ⊘ i = 1 ⊃ ⊘ 1 = cond(i, t2,∼t2)
– N(i, j; t1, t2, t3) ∧ ⊘ i = 1 ∧ ⊘ j = 1 ⊃
(⊘1 = cond(i, t1,∼t3)

⊃⊂ ⊘ 1 = cond(j, cond(i, t1,∼t3), cond(i, t2,∼t2)))

51

As the consequence, these are derivable:

– N(i, j; t1, t2, t3) ∧ ⊘ i = 1 ∧ ⊘ j = 1 ⊃
(⊘ 1 = cond(i, t1,∼t3)

⊃⊂ ⊘ 1 = cond(j, cond(i, t1,∼t2), cond(i, t2,∼t3)))

– N(j, i; t1, t2, t3) ∧ ⊘ i = 1 ∧ ⊘ j = 1

∧ ⊘ 1 = cond(i, t1,∼t2) ∧ ⊘ 1 = cond(i, t2,∼t3)
⊃ ⊘ 1 = cond(i, t1,∼t3)

Therefore, by eliminating the variable j:

– N(i; t1, t2, t3) ∧ ⊘ i = 1

∧ ⊘ 1 = cond(i, t1,∼t2) ∧ ⊘ 1 = cond(i, t2,∼t3)
⊃ ⊘ 1 = cond(i, t1,∼t3)

52

By repitating the same discussion:

– N(i; t1, t2, ..., tn) ∧ ⊘ i = 1

∧ ⊘ 1 = cond(i, t1,∼t2)
∧ ⊘ 1 = cond(i, t2,∼t3)
. . .

∧ ⊘ 1 = cond(i, tn−1,∼tn) ⊃ ⊘ 1 = cond(i, t1,∼tn)

53

We will show the indistinguishability of each line to the next:

1. circ(c, ge(1u, r), enc(ge(1u, r), x1, r1), enc(ge(1u, r), x0, r0))

2. circ(c, ge(1u, r), enc(ge(1u, r), x′, r′), enc(ge(1u, r), x0, r0)))

3. circ(c, ge(1u, r), enc(ge(1u, r), x′, r′), enc(ge(1u, r), x1, r1)))

4. circ(c, ge(1u, r), enc(ge(1u, r), x0, r0), enc(ge(1u, r), x1, r1)))

It is suffient to show the first.

54

We have

∃c′.∀kxy.N(z⃗; c, x, y, z⃗′) ⊃ N(z⃗; c, c′, k, x, y, z⃗′)∧
2 circ(c′, k, x) = circ(c, k, x, enc(k, y, r))

Hence

∃c′.∀x1x
′r1r

′.N(r, r1, r
′; c′, x1, x0, x

′, r0) ⊃
N(r, r1, r

′; c′, x1, x0, x
′, r0)

∧ 2 circ(c′, ge(1u, r), enc(ge(1u, r), x1, r1))

= circ(c, ge(1u, r), enc(ge(1u, r), x1, r1), enc(ge(1u, r), x0, r0))

∧ 2 circ(c′, ge(1u, r), enc(ge(1u, r), x′, r′))

= circ(c, ge(1u, r), enc(ge(1u, r), x′, r′), enc(ge(1u, r), x0, r0))

55

Hence

∃c′.∀x1x
′r1r

′.N(r, r1, r
′; c′, x1, x0, x

′, r0) ⊃
N(c′;x1, x

′, r1, r
′, r)

∧ 2 cond(i, circ(c, enc(ge(1u, r), x1, r1), enc(ge(1u, r), x0, r0)),

∼circ(c, enc(ge(1u, r), x′, r′), enc(ge(1u, r), x0, r0)))

= cond(i, circ(c′, ge(1u, r), enc(ge(1u, r), x1, r1)),

∼circ(c′, ge(1u, r), enc(ge(1u, r), x′, r′)))

56

By IND,

N(r, r1, r
′; c′′, x1, x

′) ⊃
⊘ 1 = cond(i, circ(c′′, ge(1u, r), enc(ge(1u, r), x1, r1)),

∼circ(c′, ge(1u, r), enc(ge(1u, r), x′, r′))

Therefore

N(r, r1, r
′; c′, x1, x0, x

′, r0) ⊃
⊘ 1 = cond(i, circ(c′, ge(1u, r), enc(ge(1u, r), x1, r1), x0, r0),

∼circ(c′, ge(1u, r), enc(ge(1u, r), x′, r′), x0, r0))

57

Therefore

N(r, r1, r
′; c, x1, x0, x

′, r0) ∧ ⊘ 1 =

cond(i,

circ(c, ge(1u, r), enc(ge(1u, r), x1, r1), enc(ge(1u, r), x0, r0)),

∼circ(c, ge(1u, r), enc(ge(1u, r), x′, r′), enc(ge(1u, r), x0, r0))

)

58

Conclusion

We formalised the inferences on negligibly small probability.

Especially, we formalise trhe dependency of variables

by the predicate N(;).

59

