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研究背景

形式化について

形式化の目的と利点
· 証明の正当性の検証

証明における曖昧さの排除，概念の形式的定義

· ライブラリの検証

Coq/SSReflectによる形式化

· 四色定理（Gonthier，2008）
· Feit-Thompsonの定理（Gonthier et al.，2013）
· Shannonの定理（Affeldt et al.，2014）
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研究背景

Shannonの定理

「A Mathematical Theory of Communication」(1948)における，
Shannonの定理一覧

情報源符号化
通信路符号化

固定長 可変長

順定理 ◦ • ◦
逆定理 ◦ • ◦

◦· · · 形式化済•· · · 本研究•· · · 未形式化
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可変長情報源符号化順定理 informal statement

情報源符号化について

情報源符号化とはデータ圧縮のこと．
代表的な圧縮形式として非可逆圧縮の mp3，jpegや，可逆圧縮の zip，lzh．

情報源が分布になってる．

例

X := {あ,い,う }
P (あ) = 0.7, P (い) = 0.2, P (う) = 0.1

あううあああいあいあいああああいああああ . . .
あ :い :う = 7 : 2 : 1
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可変長情報源符号化順定理 informal statement

informal statement

Theorem (可変長情報源符号化順定理)

· Xn : n個の確率変数（それぞれが独立な同一分布に従う）
· H(X) : 確率変数X のエントロピー

nが十分大きいとき，
次を満たす，単射 f が存在する．

E
[ 1
n
l(Xn)

]
≤ H(X) + ε.

ただし，· f ：Xn の事象からビット列への符号化写像 (f : Xn → F∗
2)，

· l(x)：系列 xの像の長さ（f(x)の長さ），とする．

像の長さを nで割った平均を，H(X)ビットより少し大きい値まで圧縮できる．

P (あ) = 0.7, P (い) = 0.2, P (う) = 0.1ならば，圧縮後の長さを nで割った平均
をH(P )(≈ 0.35)ビットくらいまで圧縮できる．
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可変長情報源符号化順定理 informal statement

証明（符号化写像の定義）

Definition (長さ nの典型系列)

次の条件を満たす系列 x ∈ Xn を典型系列という．

2−n(H(P )+ε) ≤ Pn(x) ≤ 2−n(H(P )−ε).

典型系列全体の集合を T S(n, P, ε)と記述する．

例 ： n := 10, ε := 0.82 のとき，
　 ああいうああああいあ ⇒ 典型系列
　 ううういあううあうう ⇒ 非典型系列

Lemma (T S(n, P, ε)の濃度の上界)

典型系列全体の集合の濃度 |T S(n, P, ε)|は次の上界をもつ．

|T S(n, P, ε)| ≤ 2n(H(P )+ε).

9 / 20



可変長情報源符号化順定理 informal statement

証明（符号化写像の定義）

符号化写像 f : Xn → F∗
2 を定める．

定義域を二つに分ける．

Xn = T S(n, P, ε)
高々2n(H(P )+ε) 個の系列

∪ T Sc(n, P, ε)

高々|Xn|個の系列

単射 f を次のように定義：

x ∈ T S(n, P, ε) =⇒
f(x) = 1 ::

[
長さ L0 = ⌈n(H(P ) + ε)⌉のビット列

]
x /∈ T S(n, P, ε) =⇒

f(x) = 0 ::
[
長さ L1 = ⌈log2(|Xn|)⌉のビット列

]
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可変長情報源符号化順定理 informal statement

証明

Theorem (可変長情報源符号化順定理)

nが十分大きいとき， · · · ∃n0, n0 < nに対して,
次を満たす，単射（よって可逆）が存在する．

E
[ 1
n
l(Xn)

]
≤ H(X) + ε.

ε′ := ε
3+3 log2 |X | , n0 := max

[⌈
2

1+log2 |X |

⌉
,
⌈
8
ε

⌉
,
⌈

σ2

ε′3

⌉]
とする．

E[l(Xn)]=
∑

x∈Xn

Pn(x)l(x)

=
∑

x∈T S(n,P,ε′)

Pn(x)l(x) +
∑

x∈T S(n,P,ε′)c

Pn(x)l(x)

=
∑

x∈T S(n,P,ε′)

Pn(x)(L0 + 1) +
∑

x∈T S(n,P,ε′)c

Pn(x)(L1 + 1)
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可変長情報源符号化順定理 informal statement

Lemma (長い典型系列集合の生起確率の下界)

∀n, σ2

ε′3 ≤ nのとき，典型系列集合の生起確率には次の下界をもつ．∑
x∈T S(n,P,ε′)

Pn(x) ≥ 1− ε′.

ただし，σ2 =
∑

x∈Xn P (x)(logP (x))2 − (H(P ))2 とする．

n0 := max

[⌈
2

1+log2 |X |

⌉
,
⌈
8
ε

⌉
,
⌈

σ2

ε′3

⌉]
= (L0 + 1)

∑
x∈T S(n,P,ε′)

Pn(x) + (L1 + 1)
∑

x∈T S(n,P,ε′)c

Pn(x)

≤ (L0 + 1) + ε′(L1 + 1)

≤ n
(
H(P ) +

1

3
ε+

2

3n(1 + log2 |X |)
ε+

2

n

)
E[l(Xn)] ≤ n(H(P ) + ε) □
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可変長情報源符号化順定理 formal statement

formal statement

符号化関数の型（Xn → F∗
2）

Definition var_enc X n := n.-tuple X → seq bool.

Variable f : var_enc X n.

平均符号長（E[l(Xn)]）の定義
Definition exp_len_cw f P :=

E (mkRvar (P^n) (fun x ⇒(size (f x)))).

Theorem （可変長情報源符号化順定理）

Variable X : finType.

Variable n : nat.

Variable ε : R.

Hypothesis ep_pos : 0 < ε.
Definition n0 := ... .

Theorem vscode : n0 < n →
∃ f : var_enc X n,

injective f ∧
exp_len_cw f P / n ≤ H P + ε.

Theorem

∃n0, n0 ≤ nに対して,
次を満たす，単射 f が存在する．

E
[ 1
n
l(Xn)

]
< H(X) + ε.
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符号化写像の形式化

符号化写像の形式化

� �
単射 f を次のように定義：

x ∈ T S(n, P, ε) ⇒ f(x) = 1 ::
[
長さ L0 = ⌈n(H(P ) + ε)⌉のビット列

]
x /∈ T S(n, P, ε) ⇒ f(x) = 0 ::

[
長さ L1 = ⌈log2(|Xn|)⌉のビット列

]
� �

L0, L1 の定義

Definition L0 := ⌈ n * (HP + ε) ⌉.
Definition L1 := ⌈ log(♯ |[set : n.-tuple X]|) ⌉.

Definition ceil r : Z := - Int_part (- r).

Lemma ceil_upper:∀ r, ceil r < r + 1.

Lemma ceil_bottom:∀ r, r ≤ ceil r.
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符号化写像の形式化

符号化写像の形式化

� �
単射 f を次のように定義：

x ∈ T S(n, P, ε) ⇒ f(x) = 1 ::
[
長さ L0 = ⌈n(H(P ) + ε)⌉のビット列

]
x /∈ T S(n, P, ε) ⇒ f(x) = 0 ::

[
長さ L1 = ⌈log2(|Xn|)⌉のビット列

]
� �

f を次のように定義：

Definition f : var_enc X n := fun x ⇒
if x ∈ T S P n ε then

true :: enc_typ x

else

false :: enc_not_typ x.

16 / 20



符号化写像の形式化

Definition enc_typ x :=

let i := index x (enum ( T S P n ε))
in Tuple (size_nat2bin i L0).

aaa

i-th element
in T S P n ε

j-th element
in X k

1 :: [i in binary of length L0]

0 :: [j-th element in set of FL1
2 ]

F∗
2

X k

T S P k ε

not T S P k ε

prefix 1

prefix 0
f

aaa

i-th element
in T S P n ε

j-th element
in X k

1 :: [i in binary of length L0]

0 :: [j-th element in set of FL1
2 ]

F∗
2

X k

T S P k ε

not T S P k ε

prefix 1

prefix 0
f

aaa

i-th element
in T S P n ε

j-th element
in X k

1 :: [i in binary of length L0]

0 :: [j-th element in set of FL1
2 ]

F∗
2

X k

T S P k ε

not T S P k ε

prefix 1

prefix 0
f

aaa

i-th element
in T S P n ε

j-th element
in X k

1 :: [i in binary of length L0]

0 :: [j-th element in set of FL1
2 ]

F∗
2

X k

T S P k ε

not T S P k ε

prefix 1

prefix 0
f

aaa

i-th element
in T S P n ε

j-th element
in X k

1 :: [i in binary of length L0]

0 :: [j-th element in set of FL1
2 ]

F∗
2

X k

T S P k ε

not T S P k ε

prefix 1

prefix 0
f

aaa

i-th element
in T S P n ε

j-th element
in Xn

1 :: [i in binary
of length L0]

0 :: [j-th element
in set of FL1

2 ]

F∗
2

Xn

T S P n ε

not T S P n ε

prefix 1

prefix 0
f
(enc_typ)
(enc_not_typ)

aaa

i-th element
in T S P n ε

j-th element
in Xn

1 :: [i in binary
of length L0]

0 :: [j-th element
in set of FL1

2 ]

F∗
2

Xn

T S P n ε

not T S P n ε

prefix 1

prefix 0
f
(enc_typ)
(enc_not_typ)

aaa

i-th element
in T S

j-th element
in Xn

1 :: [i in binary
of length L0]

0 :: [j-th element
in set of FL1

2 ]

F∗
2

Xn

T S

not T S

prefix 1

prefix 0
f
(enc_typ)
(enc_not_typ)

aaa

i-th element
in T S

j-th element
in Xn

1 :: [i in binary
of length L0]

0 :: [j-th element
in set of FL1

2 ]

F∗
2

Xn

T S

not T S

prefix 1

prefix 0
f
(enc_typ)
(enc_not_typ)

aaa

i-th element
in T S

j-th element
in Xn

1 :: [i in binary
of length L0]

0 :: [j-th element
in set of FL1

2 ]

F∗
2

Xn

T S

not T S

prefix 1

prefix 0
f
(enc_typ)
(enc_not_typ)

VI. OVERVIEW OF THE TECHNICALITIES

The formal proof of variable-length source coding theorem
gets long because we manipulate real numbers in most of the
proof. For example with respect to the proof of properties of
encoding function, in which we manipulate natural numbers,
its specification is 16 lines and its proof is 59 lines, but with
respect to the proof of property concerned with the asymptotic
bound, in which we manipulate real numbers, its specification
is 28 lines and its proof is 243 lines.

A Sample Technical Step: For example, we prove the
lemma that |X

n

|  |FL1
2 |. We take this opportunity to illustrate

the interactive process of formal verification using the Coq
proof-assistant. We explain only a few steps of the proof. We
formalize as follows:

Lemma card_tuple_le_L1 :
INR ]|[set: n.-tuple X]| 

INR ]|[set: (Zabs_nat L1).-tuple bool]|.
Proof.
...

rewrite -INR_pow_expn.

where INR is an injection from a natural number to a real
number. Similarly Zabs_nat is an absolute value function
from an integer to a natural number. These functions have
been used many times until now but we have hidden these for
the sake of clarity.

At this point, Coq displays the following subgoals (the goals
are below the double-bar (“=========”), the hypotheses
above) and asks the user to provide formal proofs for them:

2 subgoals, subgoal 1 (ID 289)

n’ : nat
n := n’+1 : nat
X : finType
P : dist X
" : R
ep_pos : 0 < "
==============

1  INR ]|X| ˆ n

subgoal 2 (ID 274) is:
log (INR (]|X| ˆ n)) 

IZR (ceil (log (INR (]|X| ˆ n))))

where IZR is an injection from an integer to a real number.
This means that we need to prove two subgoals. At first
we prove 1  INR ]|X| ˆ n. We apply a lemma named
pow_R1_Rle which says that if a real number is not less than
1 then an n-th power of the number is also not less than 1.
Next, we apply the lemma named Xcard which says that if
there is a distribution over a finite set , the cardinality of the
set is not less than 1. We apply several lemmas all at once as
follows:

by apply pow_R1_Rle, Xcard.

Then Coq requires as follows:

1 subgoals, subgoal 1 (ID 274)

n’ : nat

n := n’+1 : nat
X : finType
P : dist X
" : R
ep_pos : 0 < "
==============

log (INR (]|X| ˆ n)) 
IZR(ceil (log (INR (]|X| ˆ n))))

We can apply a property of bottom of ceiling function:

by apply ceil_bottom.
Qed.

Qed is the final Coq command of a completed formal proof.
It triggers an automatic verification process that guarantees
for the formal proof script above is indeed valid.
j-th element
in Xn

1 :: [i in binary
of length L0]

0 :: [j-th element
in set of FL1

2 ]

VII. CONCLUSION

In this paper, we formalized the direct part of variable-
length source coding theorem using typical sequences. Thanks
to our work, we were able to extend [6] with not only a
new foundational theorem (namely, the variable-length source
coding theorem) but also with small but useful extensions (e.g.,
the ceiling function and its properties). More importantly, the
formal version of the variable-length source coding theorem
that we propose in this paper improves on textbooks by
providing a concrete expression for the asymptotic claim. As
future work, we would like to formalize of the same theorem
but using the McMillan’s inequality [9] as well as formalize
the converse part of the same theorem.
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Proof.
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where INR is an injection from a natural number to a real
number. Similarly Zabs_nat is an absolute value function
from an integer to a natural number. These functions have
been used many times until now but we have hidden these for
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of length L0]

0 :: [j-th element
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VII. CONCLUSION

In this paper, we formalized the direct part of variable-
length source coding theorem using typical sequences. Thanks
to our work, we were able to extend [6] with not only a
new foundational theorem (namely, the variable-length source
coding theorem) but also with small but useful extensions (e.g.,
the ceiling function and its properties). More importantly, the
formal version of the variable-length source coding theorem
that we propose in this paper improves on textbooks by
providing a concrete expression for the asymptotic claim. As
future work, we would like to formalize of the same theorem
but using the McMillan’s inequality [9] as well as formalize
the converse part of the same theorem.
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Definition enc_not_typ x := enum_val

(widen_ord le_n_L1_tuple (enum_rank x)).
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1 研究背景

2 可変長情報源符号化順定理
informal statement
formal statement

3 符号化写像の形式化

4 おわりに
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おわりに

今回の形式化について

Theorem （可変長情報源符号化順定理）

Variable X : finType.

Variable n : nat.

Variable ε : R.

Hypothesis ep_pos : 0 < ε.
Definition n0 := ... .

Theorem vscode : n0 < n →
∃ f : var_enc X n,

injective f ∧
exp_len_cw f P / n ≤ H P + ε.

f に関連した証明

· 補題：17個，約 230行{ L0, L1 に関する不等式
単射性
逆写像の構成
一意復号可能性

n0 に関連した証明

· 補題：10個，約 200行
行数のかかる証明の例：

2

3n(1 + log2 |X |)ε ≤ 1

3
ε
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おわりに

まとめ

本研究にて形式化した定理，定義：

· 可変長情報源符号化順定理
· 天井関数の定義
· 天井関数の上界，下界

今後の研究題目：
· 別証明での，可変長情報源符号化順定理の形式化
· 可変長情報源符号化逆定理の形式化
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