SSReflect による 可変長情報源符号化順定理の形式化

小尾 良介

joint work with 萩原 学 (千葉大学) Reynald Affeldt (AIST)

千葉大学 理学研究科

September 5, 2014

Table of Contents

2 可変長情報源符号化順定理

- informal statement
- formal statement

③ 符号化写像の形式化

🕘 おわりに

2 可変長情報源符号化順定理

- informal statement
- o formal statement

③ 符号化写像の形式化

④ おわりに

形式化について

- 形式化の目的と利点
 - 証明の正当性の検証

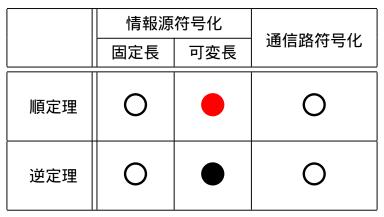
証明における曖昧さの排除,概念の形式的定義

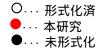
- ・ライブラリの検証
- Coq/SSReflect による形式化
 - · 四色定理 (Gonthier, 2008)
 - · Feit-Thompson の定理 (Gonthier et al., 2013)
 - · Shannon の定理 (Affeldt et al., 2014)

研究背景

Shannon の定理

「A Mathematical Theory of Communication」(1948)における, Shannonの定理一覧





5 / 20

1 研究背景

2 可变長情報源符号化順定理

- informal statement
- formal statement

③ 符号化写像の形式化

🕘 おわりに

情報源符号化について

- 情報源符号化とはデータ圧縮のこと、
 代表的な圧縮形式として非可逆圧縮の mp3, jpeg や,可逆圧縮の zip, lzh.
- 情報源が分布になってる.
 例

$$\mathcal{X} := \{ \, \mathbf{b}, \mathbf{l} \, \mathbf{l}, \mathbf{j} \}$$

 $P(\mathbf{b}) = 0.7, \ P(\mathbf{l} \, \mathbf{l}) = 0.2, \ P(\mathbf{j}) = 0.1$

あううあああいあいあいああああいああああ... あ:い:う=7:2:1

informal statement

Theorem (可变長情報源符号化順定理)

Xⁿ : n 個の確率変数(それぞれが独立な同一分布に従う)
 H(X) : 確率変数 X のエントロピー

n が十分大きいとき , 次を満たす , 単射 f が存在する .

$$\operatorname{E}\left[\frac{1}{n}l(X^n)\right] \le H(X) + \varepsilon.$$

ただし, f : X^n の事象からビット列への符号化写像 $(f : \mathcal{X}^n \to \mathbb{F}_2^*)$, $\cdot l(x)$: 系列 x の像の長さ(f(x) の長さ), とする.

像の長さをnで割った平均を,H(X)ビットより少し大きい値まで圧縮できる.

 $P(\mathbf{b}) = 0.7, P(\mathbf{i}) = 0.2, P(\mathbf{j}) = 0.1$ ならば, 圧縮後の長さをnで割った平均を $H(P)(\approx 0.35)$ ビットくらいまで圧縮できる.

証明(符号化写像の定義)

Definition (長さ n の典型系列)

次の条件を満たす系列 $x \in \mathcal{X}^n$ を典型系列という.

$$2^{-n(H(P)+\varepsilon)} \le P^n(x) \le 2^{-n(H(P)-\varepsilon)}.$$

典型系列全体の集合を $\mathcal{TS}(n, P, \varepsilon)$ と記述する.

例 : n := 10, ε := 0.82 のとき, ああいうああああいあ ⇒ 典型系列 ううういあううあうう ⇒ 非典型系列

Lemma ($\mathcal{TS}(n, P, \varepsilon)$ の濃度の上界)

典型系列全体の集合の濃度 $|\mathcal{TS}(n, P, \varepsilon)|$ は次の上界をもつ.

 $|\mathcal{TS}(n, P, \varepsilon)| \le 2^{n(H(P) + \varepsilon)}.$

証明(符号化写像の定義)

• 符号化写像 $f: \mathcal{X}^n \to \mathbb{F}_2^*$ を定める. 定義域を二つに分ける.

> $\mathcal{X}^{n} =$ $\mathcal{TS}(n, P, \varepsilon)$ \cup $\mathcal{TS}^{c}(n, P, \varepsilon)$ 高々 $2^{n(H(P)+\varepsilon)}$ 個の系列 $\overline{a} \overline{\mathcal{TS}^{c}(n, P, \varepsilon)}$

単射 f を次のように定義:

Theorem (可变長情報源符号化順定理)

*n*が十分大きいとき, ··· ∃*n*₀, *n*₀ < *n* に対して, 次を満たす, 単射(よって可逆)が存在する.

$$\begin{split} \mathbf{E}\Big[\frac{1}{n}l(X^n)\Big] &\leq H(X) + \varepsilon.\\ \varepsilon' := \frac{\varepsilon}{3+3\log_2|\mathcal{X}|}, \quad n_0 := \max\left[\Big[\frac{2}{1+\log_2|\mathcal{X}|}\Big], \Big[\frac{8}{\varepsilon}\Big], \Big[\frac{\sigma^2}{\varepsilon'^3}\Big]\Big] \not \succeq \mathfrak{FS} \ .\\ \mathbf{E}[l(X^n)] &= \sum_{x \in \mathcal{X}^n} P^n(x)l(x)\\ &= \sum_{x \in \mathcal{TS}(n,P,\varepsilon')} P^n(x)l(x) + \sum_{x \in \mathcal{TS}(n,P,\varepsilon')^c} P^n(x)l(x)\\ &= \sum_{x \in \mathcal{TS}(n,P,\varepsilon')} P^n(x)(L_0+1) + \sum_{x \in \mathcal{TS}(n,P,\varepsilon')^c} P^n(x)(L_1+1) \end{split}$$

Lemma (長い典型系列集合の生起確率の下界)

 $\forall n, \frac{\sigma^2}{\varepsilon'^3} \leq n$ のとき, 典型系列集合の生起確率には次の下界をもつ.

$$\sum_{x \in \mathcal{TS}(n,P,\varepsilon')} P^n(x) \ge 1 - \varepsilon'.$$

ただし ,
$$\sigma^2 = \sum_{x \in \mathcal{X}^n} P(x) (\log P(x))^2 - (H(P))^2$$
 とする .

$$n_{0} := \max\left[\left\lceil\frac{2}{1+\log_{2}|\mathcal{X}|}\right\rceil, \left\lceil\frac{8}{\varepsilon}\right\rceil, \left\lceil\frac{\sigma^{2}}{\varepsilon'^{3}}\right\rceil\right]\right]$$

$$= (L_{0}+1) \sum_{x \in \mathcal{TS}(n, P, \varepsilon')} P^{n}(x) + (L_{1}+1) \sum_{x \in \mathcal{TS}(n, P, \varepsilon')^{c}} P^{n}(x)$$

$$\leq (L_{0}+1) + \varepsilon'(L_{1}+1)$$

$$\leq n\left(H(P) + \frac{1}{3}\varepsilon + \frac{2}{3n(1+\log_{2}|\mathcal{X}|)}\varepsilon + \frac{2}{n}\right)$$

$$\mathbf{E}[l(X^{n})] \leq n(H(P) + \varepsilon) \qquad \Box$$

formal statement

符号化関数の型(Xⁿ→ F₂^{*}) Definition var_enc X n := n.-tuple X → seq bool. Variable f : var_enc X n.
平均符号長(E[l(Xⁿ)])の定義 Definition exp_len_cw f P := E(mkRvar (Pⁿ) (fun x ⇒(size (f x)))).

Theorem (可変長情報源符号化順定理)

```
Variable X : finType.
Variable n : nat.
Variable \varepsilon : R.
Hypothesis ep_pos : 0 < \varepsilon.
Definition n0 := ... .
Theorem vscode : n0 < n \rightarrow
\exists f : var_enc X n,
injective f \land
exp_len_cw f P / n \leq \mathcal{H} P + \varepsilon.
```

Theorem

 $\exists n_0, n_0 \leq n$ に対して, 次を満たす , 単射 f が存在する . $\mathrm{E}\left[\frac{1}{n}l(X^n)\right] < H(X) + \varepsilon.$

2) 可変長情報源符号化順定理

- Informal statement
- o formal statement

③ 符号化写像の形式化

④ おわりに

符号化写像の形式化

単射 f を次のように定義:

$$x \in \mathcal{TS}(n, P, \varepsilon) \Rightarrow f(x) = 1 :: \left[$$
長さ $L_0 = \lceil n(H(P) + \varepsilon) \rceil$ のビット列 $\right]$
 $x \notin \mathcal{TS}(n, P, \varepsilon) \Rightarrow f(x) = 0 :: \left[$ 長さ $L_1 = \lceil \log_2(|\mathcal{X}^n|) \rceil$ のビット列 $\right]$

```
L_0, L_1 の定義
Definition L0 := \lceil n * (HP + \varepsilon) \rceil.
Definition L1 := \lceil \log(\sharp | [set : n.-tuple X] |) \rceil.
```

```
Definition ceil r : Z := - Int_part (- r).
Lemma ceil_upper:\forall r, ceil r < r + 1.
Lemma ceil_bottom:\forall r, r \leq ceil r.
```

符号化写像の形式化

単射 f を次のように定義:

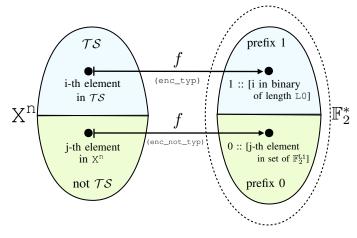
$$x \in \mathcal{TS}(n, P, \varepsilon) \Rightarrow f(x) = 1 ::: \begin{bmatrix}$$
長さ $L_0 = \lceil n(H(P) + \varepsilon) \rceil$ のビット列 $\end{bmatrix}$
 $x \notin \mathcal{TS}(n, P, \varepsilon) \Rightarrow f(x) = 0 :: \begin{bmatrix}$ 長さ $L_1 = \lceil \log_2(|\mathcal{X}^n|) \rceil$ のビット列 $\end{bmatrix}$

f を次のように定義:

Definition f : var_enc X n := fun x \Rightarrow if x $\in TS$ P n ε then true :: enc_typ x else false :: enc_not_typ x.

符号化写像の形式化

Definition enc_typ x := let i := index x (enum (TS P n ε)) in Tuple (size_nat2bin i L0).



Definition enc_not_typ x := enum_val
 (widen_ord le_n_L1_tuple (enum_rank x)).

2 可変長情報源符号化順定理

- informal statement
- o formal statement

③ 符号化写像の形式化

今回の形式化について

Theorem (可変長情報源符号化順定理)

```
Variable X : finType.
Variable n : nat.
Variable \varepsilon : R.
Hypothesis ep_pos : 0 < \varepsilon.
Definition n0 := ....
Theorem vscode : n0 < n \rightarrow
\exists f : var_enc X n,
injective f \land
exp_len_cw f P / n \leq \mathcal{H} P + \varepsilon.
```

f に関連した証明

· 補題:	17 個 , 約 230 行
{ <u>i</u> i	L ₀ , L ₁ に関する不等式 単射性 ●写像の構成 ─ 意復号可能性

n_0 に関連した証明	
·補題:10個,約200行	
行数のかかる証明の例:	
$\frac{2}{3n(1+\log_2 \mathcal{X})}\varepsilon \le \frac{1}{3}\varepsilon$	

おわりに

- 本研究にて形式化した定理,定義:
 - · 可変長情報源符号化順定理
 - 天井関数の定義
 - ·天井関数の上界,下界
- 今後の研究題目:
 - ·別証明での,可変長情報源符号化順定理の形式化
 - 可変長情報源符号化逆定理の形式化