途中計算情報の漏洩に対する認証鍵交換プロトコルの安全性考察

2011/9/16 米山一樹

NTT Information Sharing Platform Laboratories

Aim of this work

Security classification of previous (Diffie-Hellman type) AKE schemes in the seCK model

seCK model : security against leakage of intermediate computation results

Security reconsideration of SMQV protocol
SMQV was proved to be secure in the seCK model.

Outline

- Introduction
 - DH-type AKE
 - Security models
 - SMQV protocol

SMQV revisited

- Original proof strategy for ICR reveal
- Proof error

Classification

(DH-type) authenticated key exchange

Security models for AKE

HMQV protocol

a

 K_{B} $K_A = g^a$

 $X = g^x$

V

$D=H_1(X,B), E=H_1(Y,A)$

 $Exp_A = x + Da$

 $Sig_A = (YK_B^E)^{Exp_A}$

 $SK = H_2(Sig_A)$

Attack (atk 1) to HMQV with ICR [SEVB10]

Adv successfully impersonates A to B

SMQV protocol (resilient to atk 1)

Our motivation

seCK model is considerably strong model.
– But, only SMQV is proved to be secure.

'insecure' schemes?

This work

Security classification of previous (Diffie-Hellman type) AKE in the seCK model.

- **SMQV** was stated to be secure... but, proof is flawed!
- There is no known secure scheme!

Secure	Hard to prove	Insecure	Total break
none	SMQV FHMQV NAXOS	MQV HMQV Kim-Fujioka-Ustaoglu KEA+	CMQV UP Fujioka-Suzuki Okamoto Moriyama-Okamoto

Outline

- Introduction
 - DH-type AKE
 - Security models

SMQV revisited

- Original proof strategy for ICR reveal
- Proof error

Classification

Strategy of original proof

Giving reduction to the gap DH assumption in the random oracle model.

Most subtle point is to simulate the case (event E) that U and V are embedded to X and K_B .

Simulation of event *E*

Sim must simulate ICR of **B** without knowing **b**.

An attack scenario (atk 2)

Possible strategy to atk 2

Sim must fix D_i for $X_i = (g^{r_i}U^{-1})^{D_i^{-1}}$ before knowing Z_{ij_i} .

- But, Sim cannot know whether D_i should be set as $H_1(X', Z_{i0}, B, P)$ or $H_1(X', Z_{i1}, B, P)$.
- So, Sim must guess j_i for all *i*.
- If one of N guesses is failed, the simulation is failed.
 Pr[Sim succeeds] ≤ 1/2^N

SMQV is not proved to be secure in the seCK model

negligible!

Outline

- Introduction
 - DH-type AKE
 - Security models
 - SMQV protocol

SMQV revisited

- Original proof strategy for ICR reveal
- Proof error

Classification

Classifying security levels

Secure': provable in the seCK model

 Hard to prove': way to prove is unknown as SMQV (no explicit attack)

Insecure': existence of explicit attack to break session key security

Total break': existence of explicit attack to reveal SSK

Classification result

There is no 'secure' scheme.

Some schemes fall into 'total break'.

Secure	Hard to prove	Insecure	Total break
none	SMQV FHMQV NAXOS	MQV HMQV Kim-Fujioka-Ustaoglu KEA+	CMQV UP Fujioka-Suzuki Okamoto Moriyama-Okamoto

Revealing SSK of UP with ICR

Conclusion

- Unfortunately, we have no (DH-type) protocol which is secure in the seCK model.
 - We guess that two-move and implicitly authenticated protocol is hard or impossible to prove.
 - Explicit authenticated or three-move protocol may be possible.
- Be careful with multiple sessions.
 - Frequently, adversaries can do complex attack scenarios with information of multiple sessions.

フォーマルメソッドの導入に向けて

- 今回は人力で証明ミスと攻撃を発見した。 - 自動化できたら嬉しい (FAIS研究会的には)
- 1つの方向性: Scytherの利用
 - Cas Cremers作成の解析フレームワーク・ツール
 - ICRやESKの漏洩をモデル化可能
 - ∃記号モデルでの攻撃 ⇒ ∃計算論モデルでの攻撃

Thank you!

Ephemeral Key Leakage

Ephemeral secret key (ESK)
– Temporary and session-specific randomness
e.g.) Diffie-Hellman (DH) key exchange

poor pseudo-

random generator

Two implementation modes

