Specification-Based
Verification and Testing of
Internet Protocols



A research project funded by NICT
From October 2010 to March 2013
(Jointly with Lepidum, Inc.)

Objective:

Design a methodology to certify implementation of
Internet protocols

Leader:

Etsuya Shibayama (AIST & The University of Tokyo)
AIST Participants:

" Reynald Affeldt (AIST)

= David Nowak (AIST)

= Yutaka Oiwa (AIST)

» Kuniyasu Suzaki (AIST)



Complementarity of
formal verification and testing

We combine theorem proving and testing.

Proof Assistant Model Testing
checking

Technique Mathematical Abstraction, Sampling
proof State-space
exploration
Result Correctness proof Correctness proof, Bug discovery
Bug discovery
Object Source code Abstracted Runtime
source code behavior
Scalability Low Medium High
Expressivity High Low Medium

(Higher-order logic) (Temporal logic)



RFCin
English
4

Certified
Implem.
in C

4

Overview of the project

Formalization Specification in Coq
| > of packets parsing
and printing

Derivation

Protocol Virtual Machine
Interpreter < -~

Executable data Implgm.
specification | (t.‘untlme
image)
Test-case
generation, fuzzir\g, control rollback
coverage analysis, fault injection

rollback



Case study: TLS

A cryptographic layer on top of existing communication protocols

—

Handshake Alert .Change Application
TLS Cipher Spec Data

-

Record

TCP




RFCin

Formalization SPecification in Coq

> of packets parsing

English

Certified
Implem.
in C

4

and printing

Derivation

Protocol
Interpreter < -~

Executable data
specification |

Test-case
generation, fuzzing, control
coverage analysis,

rollback

Virtual Machine

Implem.

(runtime
image)

rollback,
fault injection



Data-dependent parsing for TLS
»To specify TLS packets, there is a need for dependent types.

Example: Record Handshake : Set := {
msg_ type : HandshakeType ;
body : HandshakeType type msg type

' .

»We also need dependent types to parse variable-length packets.

»We will use dependent types available in the proof assistant Coq.



Parsing monad

A monad is an abstract data type that allows to embed
imperative features in a purely functional language (like Coq).

Definition

state : Type :=

in_channel * out_channel * nat.

Definition
state —->

Definition
fun s =>

Definition
parser
fun s =>

parser (A:Type) : Type :=
exception (A * state).

ret {A:Type} (a:A) : parser A :=
value (a,s).

bind {A B:Type} (p:parser A) (f:A -> parser B)
B :=

match p s with

| value

(a,s') => £ a s'

| error msg => error msg

end.



Dependent parsing monad

For data-dependent parsing, we need a dependently typed bind.:

Definition bind dep
{A:Type} {B:A->Type} (p:parser A) (f:forall a:A, parser (B a))
parser {a:A & B a} :=
fun s =>

match p s with

| value (a,s') =>
match £ a s' with
| value (b, s'') => value (existT (fun a => B a) a b, s'"'")
| error msg => error msg
end

| error msg => error msg

end.



Example: parsing handshake packets

We parse in order the packet’s type, its length and its body:

Definition parse Handshake'
parser {ht : HandshakeType & HandshakeType type ht} :=
bind dep parse HandshakeType (

fun ht =>
len <<= parse 7 3 ;
match ht return parser (HandshakeType type ht) with
| hello request => parse exact (Zabs nat len) parse HelloRequest
| client hello => parse exact (Zabs nat len) parse ClientHello
| server hello => parse exact (Zabs nat len) parse ServerHello
| certificate => parse exact (Zabs nat len) parse Certificate
| server hello done => parse exact (Zabs nat len) parse ServerHelloDone
end

Definition parse Handshake : parser Handshake :=
h <<= parse Handshake' ;
ret {| msg type := projTl h ; body := projT2 h |}.



Parsing/Printing monad

»In some sense, they are inverse to each other.
»Parsers and printers are often implemented separately.
— Redundancy
— Potential inconsistency

»We will use invertible syntax descriptions:
a monadic approach that unifies parsing and printing



RFCin
English

V

Certified
Implem.
in C

4

Overview of the project

Formalization, Machine-readable, |
| | > Human-readable |
specification l

'd

Derivation

Protocol
Interpreter < -~

Executable
specification

|
|
|
Test-case I
generation, fuzzing, tontrol
coverage analysis, !
rollback .
|

Virtual Machine

Implem.

(runtime
image)

rollback,
fault injection



Roadmap of the following parts:

* To design a specification language that is:

— Precise enough to extract parsing/encoding
programs automatically

e Parsing part done in work in the the previous slides

* This Coq work shows us how to do theoretic things here,
very precisely!
— Type design, dependent types, etc...
— If it can be done in Coq, we can do it anywhere :-)

— Human-friendly enough to be read as document

* Add some “human-friendly” nuts where needed
— E.g. BNF, state machine description, etc...

* Add hints for “fuzzing” in the next stage



Roadmap of the following parts:

e Extract “correct” testing program (reference
impl.) from the specification

— Just interprets the input specification

* Derive “incorrect” testing program, too
— Mix the “fuzzings” with the extracted program

* E.g. trailing garbage, data overrun,
incorrect input for case branches...

* Needs more hints in the input specification than above



Roadmap of the following parts:

* Build a black-box test program
— Talk with black-box test targets

— Non-deterministically choose several “correct” or
“incorrect” behaviors on the fly

e Use program rollback to trace all possible
cases to see what happens

— Test all “correct” and “incorrect” cases thoroughly
— Use VM to rollback execution of target program



Roadmap of the following parts:

* (Rough) Plans
— FY2010: explore design choices in Coq
* See what will be needed to model parsing problems

— FY2011: Design spec language for “correct” cases
* Auto-extract testing program from the spec
* Build a test-bed system for black-box testing

— FY2012: testing “incorrect” cases

* Add fuzzing hints to the language
* Integrates with VM roll-back control



