
Specification-Based
Verification and Testing of

Internet Protocols

David Nowak and Yutaka Oiwa

RCIS, AIST

Summary
A research project funded by NICT
From October 2010 to March 2013
(Jointly with Lepidum, Inc.)

Objective:
Design a methodology to certify implementation of
Internet protocols

Leader:
Etsuya Shibayama (AIST & The University of Tokyo)

AIST Participants:
 Reynald Affeldt (AIST)
 David Nowak (AIST)
 Yutaka Oiwa (AIST)
 Kuniyasu Suzaki (AIST)

Complementarity of
formal verification and testing

Proof Assistant Model
checking

Testing

Technique Mathematical
proof

Abstraction,
State-space
exploration

Sampling

Result Correctness proof Correctness proof,
Bug discovery

Bug discovery

Object Source code Abstracted
source code

Runtime
behavior

Scalability Low Medium High

Expressivity High
(Higher-order logic)

Low
(Temporal logic)

Medium

We combine theorem proving and testing.

Protocol
Interpreter

Virtual Machine

Overview of the project
RFC in
English

Specification in Coq
of packets parsing

and printing

Formalization

Certified
Implem.

in C

Implem.
(runtime
image)

rollback,
fault injection

Executable
specification

Test-case
generation, fuzzing,
coverage analysis,

rollback

data

Derivation

control

Case study: TLS

IP

TCP

Record

Handshake Alert
Change

Cipher Spec
Application

DataTLS

A cryptographic layer on top of existing communication protocols

Protocol
Interpreter

Virtual Machine

Overview of the project
RFC in
English

Specification in Coq
of packets parsing

and printing

Formalization

Certified
Implem.

in C

Implem.
(runtime
image)

rollback,
fault injection

Executable
specification

Test-case
generation, fuzzing,
coverage analysis,

rollback

data

Derivation

control

Data-dependent parsing for TLS

Record Handshake : Set := {

msg_type : HandshakeType ;

body : HandshakeType_type msg_type

}.

To specify TLS packets, there is a need for dependent types.

Example:

We also need dependent types to parse variable-length packets.

x y

256*x + y

We will use dependent types available in the proof assistant Coq.

Parsing monad

Definition state : Type :=

in_channel * out_channel * nat.

Definition parser (A:Type) : Type :=

state -> exception (A * state).

Definition ret {A:Type}(a:A) : parser A :=

fun s => value (a,s).

Definition bind {A B:Type}(p:parser A)(f:A -> parser B) :

parser B :=

fun s =>

match p s with

| value (a,s') => f a s'

| error msg => error msg

end.

A monad is an abstract data type that allows to embed
imperative features in a purely functional language (like Coq).

Dependent parsing monad

Definition bind_dep

{A:Type}{B:A->Type}(p:parser A)(f:forall a:A, parser (B a)) :

parser {a:A & B a} :=

fun s =>

match p s with

| value (a,s') =>

match f a s' with

| value (b, s'') => value (existT (fun a => B a) a b, s'')

| error msg => error msg

end

| error msg => error msg

end.

For data-dependent parsing, we need a dependently typed bind:

Example: parsing handshake packets

Definition parse_Handshake' :

parser {ht : HandshakeType & HandshakeType_type ht} :=

bind_dep parse_HandshakeType (

fun ht =>

len <<= parse_Z 3 ;

match ht return parser (HandshakeType_type ht) with

| hello_request => parse_exact (Zabs_nat len) parse_HelloRequest

| client_hello => parse_exact (Zabs_nat len) parse_ClientHello

| server_hello => parse_exact (Zabs_nat len) parse_ServerHello

| certificate => parse_exact (Zabs_nat len) parse_Certificate

| server_hello_done => parse_exact (Zabs_nat len) parse_ServerHelloDone

end

).

Definition parse_Handshake : parser Handshake :=

h <<= parse_Handshake' ;

ret {| msg_type := projT1 h ; body := projT2 h |}.

We parse in order the packet’s type, its length and its body:

Parsing/Printing monad

In some sense, they are inverse to each other.

Parsers and printers are often implemented separately.

→ Redundancy

→ Potential inconsistency

We will use invertible syntax descriptions:
a monadic approach that unifies parsing and printing

Protocol
Interpreter

Virtual Machine

Overview of the project
RFC in
English

Machine-readable,
Human-readable

specification

Formalization

Certified
Implem.

in C

Implem.
(runtime
image)

rollback,
fault injection

Executable
specification

Test-case
generation, fuzzing,
coverage analysis,

rollback

data

Derivation

control

Roadmap of the following parts:

• To design a specification language that is:
– Precise enough to extract parsing/encoding

programs automatically
• Parsing part done in work in the the previous slides

• This Coq work shows us how to do theoretic things here,
very precisely!

– Type design, dependent types, etc…

– If it can be done in Coq, we can do it anywhere :-)

– Human-friendly enough to be read as document
• Add some “human-friendly” nuts where needed

– E.g. BNF, state machine description, etc…

• Add hints for “fuzzing” in the next stage

Roadmap of the following parts:

• Extract “correct” testing program (reference
impl.) from the specification

– Just interprets the input specification

• Derive “incorrect” testing program, too

– Mix the “fuzzings” with the extracted program

• E.g. trailing garbage, data overrun,
incorrect input for case branches…

• Needs more hints in the input specification than above

Roadmap of the following parts:

• Build a black-box test program

– Talk with black-box test targets

– Non-deterministically choose several “correct” or
“incorrect” behaviors on the fly

• Use program rollback to trace all possible
cases to see what happens

– Test all “correct” and “incorrect” cases thoroughly

– Use VM to rollback execution of target program

Roadmap of the following parts:

• (Rough) Plans

– FY2010: explore design choices in Coq

• See what will be needed to model parsing problems

– FY2011: Design spec language for “correct” cases

• Auto-extract testing program from the spec

• Build a test-bed system for black-box testing

– FY2012: testing “incorrect” cases

• Add fuzzing hints to the language

• Integrates with VM roll-back control

