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Complementarity of
formal verification and testing

Proof Assistant Model 
checking

Testing

Technique Mathematical 
proof
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exploration
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Result Correctness proof Correctness proof,
Bug discovery

Bug discovery

Object Source code Abstracted
source code

Runtime
behavior

Scalability Low Medium High

Expressivity High
(Higher-order logic)

Low
(Temporal logic)

Medium

We combine theorem proving and testing.
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Case study: TLS

IP

TCP

Record

Handshake Alert
Change

Cipher Spec
Application 

DataTLS

A cryptographic layer on top of existing  communication protocols
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Data-dependent parsing for TLS

Record Handshake : Set := {

msg_type : HandshakeType ;

body : HandshakeType_type msg_type

}.

To specify TLS packets, there is a need for dependent types.

Example:

We also need dependent types to parse variable-length packets.

x y

256*x + y

We will use dependent types available in the proof assistant Coq.



Parsing monad

Definition state : Type :=

in_channel * out_channel * nat.

Definition parser (A:Type) : Type :=

state -> exception (A * state).

Definition ret {A:Type}(a:A) : parser A :=

fun s => value (a,s).

Definition bind {A B:Type}(p:parser A)(f:A -> parser B) :

parser B :=

fun s =>

match p s with

| value (a,s') => f a s'

| error msg => error msg

end.

A monad is an abstract data type that allows to embed
imperative features in a purely functional language (like Coq).



Dependent parsing monad

Definition bind_dep

{A:Type}{B:A->Type}(p:parser A)(f:forall a:A, parser (B a)) :

parser {a:A & B a} :=

fun s =>

match p s with

| value (a,s') =>

match f a s' with

| value (b, s'') => value (existT (fun a => B a) a b, s'')

| error msg => error msg

end

| error msg => error msg

end.

For data-dependent parsing, we need a dependently typed bind:



Example: parsing handshake packets

Definition parse_Handshake' :

parser {ht : HandshakeType & HandshakeType_type ht} :=

bind_dep parse_HandshakeType (

fun ht =>

len <<= parse_Z 3 ;

match ht return parser (HandshakeType_type ht) with

| hello_request => parse_exact (Zabs_nat len) parse_HelloRequest

| client_hello => parse_exact (Zabs_nat len) parse_ClientHello

| server_hello => parse_exact (Zabs_nat len) parse_ServerHello

| certificate => parse_exact (Zabs_nat len) parse_Certificate

| server_hello_done => parse_exact (Zabs_nat len) parse_ServerHelloDone

end

).

Definition parse_Handshake : parser Handshake :=

h <<= parse_Handshake' ;

ret {| msg_type := projT1 h ; body := projT2 h |}.

We parse in order the packet’s type, its length and its body:



Parsing/Printing monad

In some sense, they are inverse to each other.

Parsers and printers are often implemented separately.

→ Redundancy

→ Potential inconsistency

We will use invertible syntax descriptions:
a monadic approach that unifies parsing and printing 
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Roadmap of the following parts:

• To design a specification language that is:
– Precise enough to extract parsing/encoding

programs automatically
• Parsing part done in work in the the previous slides

• This Coq work shows us how to do theoretic things here,
very precisely!

– Type design, dependent types, etc…

– If it can be done in Coq, we can do it anywhere :-)

– Human-friendly enough to be read as document
• Add some “human-friendly” nuts where needed

– E.g. BNF, state machine description, etc…

• Add hints for “fuzzing” in the next stage



Roadmap of the following parts:

• Extract “correct” testing program (reference 
impl.) from the specification

– Just interprets the input specification

• Derive “incorrect” testing program, too

– Mix the “fuzzings” with the extracted program

• E.g. trailing garbage, data overrun, 
incorrect input for case branches…

• Needs more hints in the input specification than above



Roadmap of the following parts:

• Build a black-box test program

– Talk with black-box test targets

– Non-deterministically choose several “correct” or 
“incorrect” behaviors on the fly

• Use program rollback to trace all possible 
cases to see what happens

– Test all “correct” and “incorrect” cases thoroughly

– Use VM to rollback execution of target program



Roadmap of the following parts:

• (Rough) Plans

– FY2010: explore design choices in Coq

• See what will be needed to model parsing problems

– FY2011: Design spec language for “correct” cases

• Auto-extract testing program from the spec

• Build a test-bed system for black-box testing

– FY2012: testing “incorrect” cases

• Add fuzzing hints to the language

• Integrates with VM roll-back control


