> REIS

National Institute of Research Center for
Advanced Industrial Science Information Security

and Technology
AIST

Towards a Certified Implementation of a
Cryptographically Secure Pseudorandom Bit Generator

BESFHICEERERELBERIRDIEL WERICFITT
(Work in progress)

Kiyoshi YAMADA
(Joint work with David NOWAK)

Research Center for Information Security, AIST
Mar. 7, 2009

JSIAM-FAIS at Kyoto

2009/03/07 YAMADA Kiyoshi

Outline

B Introduction
m Background
Hm Our goal
B How to verify the security of implementation?
H Blumb Blumb Shub(pseudo random bit generator)
B The proof assistant Coqg
B Formalization and Verification
B Related work
B Conclusion

2009/03/07 YAMADA Kiyoshi

Background

B Cryptographic primitives
m Basic cryptographic algorithms
e cipher, hash, signature, pseudo random bit generator, etc.

m Building blocks for cryptographic systems
construction

B Well tested by cryptographers

B No guarantee of implementation security
e usual programmers are not expert in cryptography
® programming IS error prone work

2009/03/07 YAMADA Kiyoshi

Our goal

B Develop a toolbox to verify the security of
cryptographic primitive implementations
1.Establish a framework to verify properties on the program
code

2.Verify the correctness of cryptographic primitives
implementation

H First target: Blum Blum Shub(BBS) in x86-64
cryptographically secure pseudo random bit generator
ewhy BBS?
it has a strong security proof based on a mathematical
problem
. *why X86-647

- “code is often written in assembly language for efficiency
£ Ongoingwork |

YAMADA Kiyoshi

How to verify the security of

implementation?

B Two Step approach
Step 1: verify the security of cryptographic algorithm
Step 2: verify the implementation follows its algorithm

M Use the proof assistant Coq

B Roadmap and the progress
Step 1:
v Verify BBS algorithm security [Nowak, 2008] Today’s Talk
Step 2: %
' = Formalize x86-64 architecture in proof assistant Coq
| =Prove correctness of BBS implementation in Coq__ |

2009/03/07 YAMADA Kiyoshi 5

Blum Blum Shub (BBS)

M A cryptographically secure pseudorandom bit

generator [Blum et al, 1986]

H Algorithm: ‘ZCZ'_H — 27 mod n'

e ;-th output = least significant bit of x;
en is a ‘Blum integer’ i.e.
a product of two big prime numbers
each prime number is congruent to 3 modulo 4

m Cryptographically secure
e satisfy the "next-bit unpredictability”

no polynomial-time algorithm can distinguish between an
output sequence of the generator and a truly random
sequence

B BBS security relies on the quadratic residuosity problem

2009/03/07 YAMADA Kiyoshi 6

The proof assistant Coq

B A formal proof management system
edeveloped by INRIA since 1984

M Coq allows:
e formalization

define functions or predicates, state mathematical
theorems and software specifications

e formal verification

develop interactively formal proofs of these theorems,
check these proofs by a relatively small certification,

kernel " Why dont you
try Coq?

M Lot of results using Coq

e Formalization of semantics of subset of C, cerviied mii-
ML compiler, formal verification of incremental GC, ...

2009/03/07 YAMADA Kiyoshi 7

Outline

‘, Introduction
B Formalization and Verification
B Implementing BBS in x86-64
B Formalizing x86-64 in Coq
B Verifying properties of x86-64 program
B Related work
B Conclusion

2009/03/07 YAMADA Kiyoshi

Implementing BBS in x86-64 (1/2)

- b
B Implementation of BBS . oL
inline void square asm triangle(. J
ulong* w, ulong* u, ...) { ... }
inline void square_ asm_diagonal (
ulong* w, ulong* u, ...) { ... }

ad bd cd dd
ac bc cc dc
3 ab bb cb db
§aa ba ca da

inline void square asm(ulong* w, ulong* u, ...) {
/* compute w = u * u */
square asm triangle(w, u, ...);
shiftLeftlBit(w, ...);
square asm diagonal(w, u, ...); }

fabcd ~ 2 = triangle * 2
; + diagonal

inline void div_mod asm(ulong* u, ulong v, ...) {
/* compute (u, v) = (u mod v, u div v) */ }

void bbs step(ulong* y, ulong* x, ulong* m, ...) {
/* y = (x * x) mod m */
square asm(y, X, ...); div_mod asm(y, m, ...); }

e original implementation is in assembly language, but here
we show a decompiled to C-like language version for the
sake of simplicity

2009/03/07 YAMADA Kiyoshi

Implementing BBS in x86-64 (2/2)

B about the implementation of BBS
e about 400 lines
e consists of multiple-precision integer arithmetic operation
multiplication and residue operation

M practical implementation
e square is not implemented as a simple multiplication,
e special cases are treated with special code

M but, a few restrictions for easier verification

® no subroutines, do not treat negative value, no absolute
addressing

2009/03/07 YAMADA Kiyoshi

10

Formalizing: Store (1/2)

M Store
B model of flags, registers and memory

(* Store definition ¥*) (* register definitions *)
Record Store : Set := { Definition RAX : nat := 0O%nat
get cf : bool; Definition RCX : nat := 2%nat
get zf : bool; Definition RDX : nat := 3%nat
get regs : list Z; Definition RSI : nat := 4%nat
get memory : list (list Z) Definition RDI : nat := 5%nat
}.

eonly elements needed for implementing BBS are modeled
e elements of register and memory cells are integers

their values are restricted to 64-bit unsigned integer by
the semantics of instructions

eregisters are modeled as a list of integer and their names
are natural numbers which correspond to their index in
this list

2009/03/07 YAMADA Kiyoshi

Formalizing: Store (2/2)

B Memory model

ethe memory is modeled as a list of memory blocks
e a memory block is modeled as a list of integers

(* Store definition *)

Record Store : Type := {
get cf : bool;
get zf : bool;
get regs : list Z;

get memory : list (list Z)

e assume no overlap between memory cells

this property might be verified independently of our
Work

we are currently focusing on the correctness of the
arithmetic part of BBS

2009/03/07

YAMADA Kiyoshi

12

Formalizing: Address

B Address
e memory cell is selected through Addr

(* address definition *) (* Semantics of Addr *)
Inductive Addr : Set := Definition sem addr
| addr : 2z (*displacement*) -> (s:s)(a:Addr) : nat*nat :=

nat (*base reg*) -> match a with

nat (*index reg*) -> | addr dis bas ind => (

Addr. Zabs nat(get reg s bas),

Zabs nat(dis + get reg s ind))
end.

ecxample
address (Addr -1 RCX RDX) points to the cell at RDX-1
of memory block at RCX

this corresponds to -1(RCX, RDX, 8) in X86-64

2009/03/07 YAMADA Kiyoshi

Formalizing: Instruction, Code

M Instruction and Code

Inductive Cond : Set := Inductive BCode : Set :=
| carry : Cond | instr : nat -> Instr -> BCode
| zero : Cond | goto : nat -> nat -> BCode
| not : Cond -> Cond. | cgoto : nat -> Cond -> nat ->
BCode.
Inductive Instr : Set :=
| clc : Instr Inductive Code : Set :=
| rel a : Addr -> Instr | empty : Code
| dec_r : nat -> Instr | bcode :> BCode -> Code
| comp : Code -> Code -> Code.

e Cond models conditions for conditional jump instruction
¢ [nstr models non-jump instructions
e BCode models all the Instructions with labels

a label corresponds to the address in assembly
language

a label is modeled as a natural number
e Code models a cluster of instructions

2009/03/07 YAMADA Kiyoshi

14

Formalizing: Example

B Code example

Definition ShiftLeftlBit (1 rl r2 r3 : nat) : Code :=
(* rl = base, r2 = offset + length, r3 = length ¥*)
(comp (instr 1 clc)

(comp (instr (1+1l) (rcl a (addr (-1) rl r2))
(comp (instr (2+1l) (dec_r r2))
(comp (instr (3+1) (dec_r r3))

(cgoto (4+1) (not zero) 1))))).

e Memory cells at index r2-r3 to r2-1 are shifted left
| SBissetto 0

memory block 0

I shift
(LN N]
<

r3

2009/03/07 YAMADA Kiyoshi

15

Formalizing: Compositional Semantics

B Semantics

e customized
compositional semantics
of [Saabas and Uustalu,
2007]

ewe use its
compositionality to split
full specifications and
proofs into small pieces

e this semantics is
equivalent to the usual
small-step semantics

e both semantics and
equivalence of them are
formalized in Coq

c_instr

sem_code(l,s)(instr 1 i)(S 1, sem_instr s i
1<>1°

sem_code(1l, s)(goto 1 1°)(1’, s)
sem_cond s cond = true 1<>1°’

sem_code(1l,s) (cgoto 1 cond 1°)(1’,s)
sem_cond s cond = false
c_cgoto_false
sem_code(1,s) (cgoto 1 cond 1°)(S 1,8) -
} ledom c1 semcode(l,s)ci(l’,s’)
¢ sem code(1l’,s’) (comp cl c2)(1’’, s’’)
. sem_code(1,s) (comp c1 c2)(1’’,s’?)

c_goto

c_cgoto_true

c_comp_left

l1€dom c2

$ sem_code(1,s)c2(1’,s?)
¥ sem_code(1l’,s’) (comp c1 c2)(1’’,

s’’ ;
) c_comp_right;

;f sem_code(1,s) (comp cl c2)(1’’,

c_end

sem_code (1,s)c(1,s)

Definition sem instr (s:s)(i:Instr):s.

Definition sem cond (s:s)(c:Cond):bool.

Fixpoint dom(c:Code) : list nat :=
match ¢ with

| empty => nil

| instr 1 _ | goto 1 _ | cgoto 1 _

| comp ¢l ¢2 => dom cl ++ dom c2.

2009/03/07

16

YAMADA Kiyoshi

Verification: Our goal in Coq

Variables p g : Z.

] .) Parameter encode :
Hypothesis p prime : prime p.

. . . nat ->
Hypothesis g prime : prime (. . :
_ ->
Parameter code : Code. giziz (n_gt_1 p_prime q_prime)

Parameter bbs : Parameter decode :
. State -> list bool.

nat -> | - boot-
Zstar (n_gt 1 p prime g prime) ->

list bool.

fTheorem correct :
t forall len seed final state,
sem code (encode len seed) code
final state -> 3
decode final state = bbs len seed.}

Parameter sem code :
State -> Code -> State.

ebbs is the BBS algorithm modeled in Coq

esem_code models x86-64 execution
e code is an implementation of BBS in x86-64 assembly
language

e Theorem correct is a proposition which states that the
implementation follows its algorithm
2009/03/07 YAMADA Kiyoshi

17

Verification: ShiftLeft1Bit (1/2)

M Specify and prove the body of the loop
m Body of the loop:

Definition ShiftLeftlBit 123(1 rl r2 r3:nat):Code :=

(comp (instr 1l (rcl a (addr (-1) rl r2 1)))

(comp (instr (1+1) (dec_r r2))
(instr (2+41) (dec_r r3)))).

m\What we proved
e Well-formedness
e Termination
¢ \/alue changes on flag, registers and memories
Example:

Lemma ShiftLeftlBit 123 correct r2 :
forall 1 rl r2 r3 s s',
r2 <> r3 ->
0 < get reg s r2 < 2764 ->
sem code (l,s) (ShiftLeftlBit 123 1 rl r2 r3) ((3+1),s') ->
get reg s' r2 + 1 = get reg s r2.

2009/03/07 YAMADA Kiyoshi

18

Verification: ShiftLeft1Bit (2/2)

B Same properties proved with loop

Definition ShiftLeftlBit 1234(1 rl r2 r3:nat):Code :=
(comp (ShiftLeftlBit 123 1 rl r2 r3)
(cgoto (3+1l) (not zero) 1)).

Definition ShiftLeftlBit(l rl r2 r3:nat):Code :=
(comp (instr 1 clc)
(ShiftLeftlBit 1234 (1+1) rl r2 r3)).

e compositionality is used here
B We define much reusable lemmas:

e inversion lemmas

Coq’s inversion tactic is powerful, but in some cases it
does not work well

e idempotence, symmetry, associativity for comp
for formal manipulation of syntactic tree
e specifications for each instruction

2009/03/07 YAMADA Kiyoshi

19

Oversight in [Saabas and Uustalu, 2007]

M B.1 Proof of Theorem 6

Theorem 6 (Preservation of evaluations as stuck reduction sequences)

If(l,o) el (I,0"), then (I,0) - (I, o) 4

Proof. By structural induction on the derivation of (I,0) — (I’,0").
The case of derivation of (I,0) — (I',0’) is of the form

I € dom(c;) (Lo)bFelh(1",0") (I",6")F (co®er) I (I',0")
(lo)Fco®er I (U,07)
where ¢ = 0 or 1: By the induction hypothesis, we have (I, o) iy (", 0" 4
and (1, 0) coBer” (1", 0" A . Bywe have (I, 0) c0®e” (I’,0") . Hence
(Lo) 225" (17,07 28" () o P

applicable!

Lemma 3 (Extension of the' oain)
If ¢g C ¢; and | € dom(co), then (I,0) = (I',0") iff (I,0) S (I, o).

Reformulate

Lemma 3’ (Extens of the dom
If co Ccy andl € dom(co),(l,a) (l’,a’)(l,a)@(l’,a’).

2009/03/07 YAMADA Kiyoshi 20

Outline

7 Introduction

‘/ Formalization and Verification
) Related work
B Conclusion

2009/03/07 YAMADA Kiyoshi

21

Related Work

B Formal verification for montgomery
multiplication implemented in assembly
language using Coq [Affeldt et al, 2006]

1. replace all jumps by while loops
2. make a proof using standard Hoare logic
3. convert while loops to jump using a certified translator

M Verification of machine code implementations
of arithmetic functions for cryptography [M.
Myreen and M. J. C. Gordon, 2007]

1. build a functional implementation of the algorithm
2. make the correctness proof of the functional program
3. prove assembly code implements functional program

2009/03/07 YAMADA Kiyoshi

22

Conclusion

B Summary

m Background
® N0 guarantee of implementation security for cryptographic
primitives
®m Our goal
edevelop a toolbox to verify the security of cryptographic
primitive implementations
m Our first results
e implementation of BBS in x86-64 assembly language

e formalization of the compositional semantics for assembly
language [Saabas and Uustalu, 2007] in Coq

e formalization of ShiftLeft1Bit, a part of our implementation of
BBS, and proofs of its properties

2009/03/07 YAMADA Kiyoshi

23

