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Motivation

Successful automatic verifications of protocols in first-order logic:
— With general-purpose theorem provers (e.g., SPASS [C. Weidenbach, 1999])
— With specialized tools (e.g., ProVerif [B. Blanchet, 2001])

Problem: False attacks because of modeling approximations
— Known issue

— Sound approximations w.r.t. the freshness of nonces

(in the case of verification for an unbounded number of sessions)

— Sound approximations w.r.t. the execution order of protocols rules

(this cannot easily be fixed by encoding state information)

Our goal: Security proofs with standard theorem provers,
discarding all false attacks,
with termination for a bounded number of sessions




How to Avoid False Attacks while Using Standard Theorem Provers?

Our approach: Use rigid variables [P. Andrews, 1981]
+ translation to first-order logic
+ complete and terminating resolution strategy

our
result

In first-order logic protocol models, the intruder instantiates variables:
— with the name of agents it wants to attack,

— with made-up messages, etc.

as many times as it wants

= This enables construction/decomposition of arbitrary messages
= But this also allows arbitrary replays of protocol rules!

With rigid variables:
— The intruder can still instantiate a variable with an arbitrary message
— But it has to commit to this one message

Rigidity has already been applied to verification of protocols:
— Decision procedure for rigid clauses in [Delaune, Lin, and Lynch, LPAR 2007]
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Outline

1. False attacks in first-order logic models of protocols

2. Rigid variables to avoid false attacks

3. Rigid resolution implemented with standard techniques



First-order Model of Protocols
T he Intruder Model

LLogical formulation of Dolev-Yao:
— Function symbols to build messages: (-,-), []. (sym. encr.), etc.
— A predicate “I" to model the knowledge of the intruder

— Deduction rules for the intruder:

( Vz,y.
Pairing/projections < <§M. NAHNVA\M&»N %w H WMMEC

. e T@)AT(y) = I([zly)
Symetric encryption < V. Nga_@v>~@v . NAav

etc.



First-order Model of a Sample Protocol (1/3)

In Alice-and-Bob notation:

A— B @ [A Nolk,p
B— A : _”muzou»\/ﬁ_.”_wn‘\»mu_”muzouzwu_wﬂkﬁm
A— B . Ny

Is N1 & N> kept secret?
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In Alice-and-Bob notation:

A— B @ [A Nolk,p
B— A : _”muzou»\/ﬁ_.”_wn‘\»mu_”muzouzwu_wﬂ\pm
A— B . Ny
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A’'s role) — 1 Q\r Zo?m?rmvv

B's role) | I Q\?imﬁ}mvv — I Qmu&uzp_wmgvmvu ﬁﬁﬁ?&mﬁ?mvv

a's role) | I ([B, No,ylk(a.5) [B: No 2l apy) = 1 ()
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First-order Model of a Sample Protocol (2/3)

In Alice-and-Bob notation:

A— B @ [A Nolk,p
B— A : _”muzou»\/ﬁ_.”_wn‘\»mu_”muzouzwu_wﬂ\»m
A— B . Ny

Is N1 & N> kept secret?

The same as a set of rules:

(generalization: the names of agents are replaced with variables)

A'srole) | I (a) NI (b)) — I QPZ&NGUSV

B's role) | Q?a?ﬁ?&v — 1 Q?ﬁ?&m«?b% ?lﬁ?w?ﬁ?sv

A’s role) I A_“? ZOQHQ“_NAQ:@Y _“? ZOQN“_NAQ;SV — NA@V

Proof ab absurdo by assuming —1 (N1, N»)
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First-order Model of a Sample Protocol (3/3)

In Alice-and-Bob notation:

A— B : _HkﬁuN/\Ou_Nﬂhm
B— A : [B,No,Nilk,,,[B,No,Nalk,,,
A—B . Ny

Is N1 & N> kept secret?

The same as a set of rules:

(approximation: freshness of nonces abstracted with dependencies)

A'srole) | I (a) NT(b) — 1 QQ; Nog _N@;Sv
B's role) | I QP&._NA?SV — I QF&.L/J _NAS@Y [b, z, No
A's role) | Q? No vSNA?Sv b, No T&NA?Sv — I (y)

Proof ab absurdo by assuming —1I (N , No )

K (a.0))
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Tentative Verification of our Sample Protocol

In ProVerif:

pred I/1 elimVar,decompData. fun senc/2.
query I:(Ni[a,i,b],N2[a,i,b]). reduc
(¥**x the intruder *x*x)

I:x & I:y -> I:senc(x,y) ;

I:x & I:senc(y, x) -> I:y ;

(***x the protocol **x)

I:a & I:b -> I:senc((a,NO[a,b]), K[a,b]) ; (x rule 1 *)

I:senc((a,x), Kl[a,b]l) -> I:(senc((b,x,N1[a,x,b]l),K[a,b]l), (* rule 2 *)
senc((b,x,N2[a,x,b]),K[a,bl)) ;
I:(senc((b,NO[a,b],y),K[a,b]),senc((b,NO[a,b],z),K[a,b])) (* rule 3 *)
-> I:y

A potential attack is found by applying, in this order:
(* rule 1 *), (*x rule 2 *), (* rule 3 *), and. .. (x rule 3 x)!

This is a false attack!

(* rule 3 *) has been played twice in the same session
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Outline

1. False attacks in first-order logic models of protocols

2. Rigid variables to avoid false attacks

3. Rigid resolution implemented with standard techniques
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Flexible Variables vs. Rigid Variables

Consider  V*{I(a), I(z) = I(f(x)), I(b), =(I(f(a)) AI(f(d))}

e \With flexible variables: [] derivable

I (a) I(z) = I(f(x)) 1) = (fa) ANI(f(b)))

// o={ora) q/H?l@y \

I(f(a)) I(f(b))

T

—1 (f(b))

.

[l

e \With rigid variables: [ not derivable

I (a) I(X) = I(f(X)) WAS ~(I (f(a)) NI (f(b)))

/ W\H,ﬂvﬁlvﬁ \ﬂ

I(f(a)) 7

T

~1(f(b))
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Our Sample Protocol with Rigid Variables

Our sample protocol in first-order logic:

— 1 Euzo?msmv

E vli,g) — L ({[Bsz, Nilk _mu&UZ&N\»mvv
I ({[B, No, Yl k o0 [B, 29,&55 — 1(y)
I ({(N1,N2)) —

Just replace flexible variables with rigid variables:

— Evzotﬁmv
I([A X]k,,) — I(([B,X,Nilk,, [B, X, Nalg )
I ({[B, No, Y1k 0 [B: No, Z]ic ) = T(Y)
NA ZHTZM v —

— The 3'9 rule cannot be played twice anymore

= T he previous false attack has disappeared
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Difficulty in Implementing Rigid Resolution

Direct implementation of rigid resolution requires backtracking
(hence the complications in [Delaune, Lin, and Lynch, LPAR 2007])

Consider {I(X), I(f(z))— Iy, —I(g9(xz))}

e 15t tentative: we cannot conclude

I(X) I(f(2)) — Io ~1 (g(2))
T o= {ainsT0) s
I(f(Y)), Io 7’

X has been assigned a f-headed term and I (X) cannot be used anymore,
= backtracking required

e 29 tentative: we can conclude

I(X) I(f(z)) = Io —1 (9(z))

o=1x—Y ;X %
/D\, g
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Outline

1. False attacks in first-order logic models of protocols

2. Rigid variables to avoid false attacks

3. Rigid resolution implemented with standard techniques
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Translation to First-order Logic

Idea:

Replace rigid variables with flexible ones and

prepend a vector of these flexible variables in I

E.g.: 3 rigid variables X,Y, Z in

I([A, X]k.,)

I ({[B, No,Y]k,,, [B, No, Z]k,,))
I ({N1, N2))

I(z) N1 (y)

I ({z,y))

become 3 flexible variables x, vy, z

NAHUQ“NQ _“\&u H_N\Ev

I AHL\Q 2 A_“mv Zou @_N\Eu _“mv Zou Nu_wpmvv
NAHUW\“NU A.N/\HUZMvv

I (z,y,2z,2') N1 (2,y,2,y')

I (z,y,2,(z',y"))

R A

I ([A, Nolk.,,)
I ({([B, X, N1]k.,, [B, X, No]k,,))
I(Y)

I ((z,y))
I (x)

and a vector x,y, z In

|V
|V
|V
|V
|V
|V

I (z,y,2,[A, Nolk,,)
I AHL\“ 2, Aﬁmu €Z, ZH”_NES ﬁmu €Z, ZMH_Nvav
I(z,y,2,9)

I (z,y,2 (z,y))
I (z,y,2 ')

Theorem: Both problems are equivalent w.r.t. satisfiability
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A Decidable Fragment of First-order Logic
Overview

e Rules with atoms of the form I (z,t) such as:

protocol rules: I (x,s) — I (z,t) with Var(t) C Var(s) Cx

intruder rules: I (Z,y0),.--,1 (T, yn—1) = I (x, f(yo,---,Yn—1))
with N {yo, ..., yn—1} =0

e Resolution with free selection for Horn clauses:
C—sA A.Cl'—=
C — !
with A and A’ subterm-maximal atoms (preferentially negative)
whose rightmost term is not a variable

e Elimination of redundant clauses

Theorem: The above strategy is complete and terminating
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Mechanized Illustration (1/3)

One session of our sample protocol with rigid variables (©x,Qy,©@z):

~ I[m] \/ ~ I[k] \/ I[senc{m,k}] /\
~ I[lsenc{m,k}] \/ = I[k] \/ I[m] /\
~ Ilm] \/ ~ I[k] \/ Ilpair{m,k}] /\
~ Ilm] \/ ~ Ilx] \/ ~ I[1] \/ I[triple{m,k,1}] /\
~ I[pair{m,k}] \/ I[m] /\
~ Ilpair{m,k}] \/ I[k] /\
~ I[triple{m,k,1}] \/ I[m] /\
~ I[triple{m,k,1}] \/ I[k] /\

~ I[triple{m,k,1}] \/ I[1]

/**% I ([A, No]k,,) ***/
-> I[senc{pair{%A,%NO},%KAB}] /\

[**x ATQQ XHN\EV — 1 A_“mv vﬁ“ ZLN\E: _“mv ;X‘v Zwumpmv k% /
I[senc{pair{%A,©x},%KAB}] ->
I[pair{senc{triple{’B,©x,%N1},%KAB},senc{triple{’B,©x,%N2},%KAB}}] /\

[**x Aﬁmuzﬁuv%uwﬂmmu _“mv»\/\ou NHN\SV — 1 A%‘v * %k /
I[pair{senc{triple{%B,%NO,Q@y},%KAB},senc{triple{’B,%N0,©z},%KAB}}] -> I[Q@y]

/*xx =] (N1, N2) **x/
~ I[pair{N1{},N2{}}]
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Mechanized Illustration (2/3)

With two honest agents A,B and one corrupted agent C:

o "B

0
NPANPA

/**x the attacker knows the keys of the corrupted agent: I (Kpc) NI (Kacg) **x/
I[KBC{}] /\ ILKAC{}]

*
*
*

session C — B *xxx/
C{}, NO := NOCB{}, KAB

/***x session A — B xxx/

A := A{}, NO := NO{}, KAB := KAB{}, B := B{}, N1 := Ni{}, N2 := N2{} ;

/**x*x session B — A x*x/

A := B{}, NO := NOBA{}, KAB := KAB{}, B := A{}, N1 := NiBA{}, N2 := N2BA{} ;
/**x*x session A — (C *xx/

A := C{}, NO := NOAC{}, KAB := KAC{}, B := C{}, N1 := N1AC{}, N2 := N2AC{} ;
/**x*x session C — A *xx/

A := C{}, NO := NOCA{}, KAB := KAC{}, B := A{}, N1 := N1CA{}, N2 := N2CA{} ;
/**x*x session B — (C *xx*xx/

A := B{}, NO := NOBC{}, KAB := KBC{}, B := C{}, N1 := N1BC{}, N2 := N2BC{} ;
/

A

KBC{}, B := B{}, N1

N1CB{}, N2 := N2CB{} ;
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Mechanized Illustration (3/3)
Results obtained with a home-made theorem prover*

Resolution on our sample protocol (6-sessions case):

— Does not terminate with traditional strategies

(standard binary resolution, positive, ordered with subterm and Ipo)

— Terminates with our strategy (after working off approx. 200 clauses)

Other results:
— Insecurity of Otway Rees, Needham-Schroeder public key

— Security of Yahalom, Lowe-Needham-Schroeder public key
— etc.

*around 2000 lines of OCaml

23



Conclusion

Useful observation (the translation rigid—flexible) for encoding
the problem of security for a bounded number of sessions:

— It leads to decidable fragments of first-order logic

— It extends to public-key encryption
— Adding parameters for ordering, it avoids all false attacks

Future work:
— Evaluate complexity of resolution

— Extend to other cryptographic constructs
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Non-Termination Issue
Problem: An inappropriate strategy may cause looping

E.g.: Consider subterm-ordered resolution:

I(y,u) NI (y,v) = I (y,(u,v)) [(z,z) = I(z,N)

/

o={xz—(u,v) Ql@w

I ({uy,v1),u1) AT ((uy,v1),v1)
— I ((u1,v1),N)

o={y—{(u,v),v1);u1—>(u,v)}

T 1

A\ng @Mvv @”_.vv QMV
N1 AM u, dwvv d”_.vv GMV

A
o fo) A (((u2,v2),v1),v1)
— 1 (({u2,v2),v1), N)
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