

Formal Verification of Cryptographic Protocols in Spi-Calculus

Eijiro Sumii Tohoku University

2006/12/22

第7回代数幾何・数論及び符号・暗号研究集会

Caution

- Literature on spi-calculus is confusing
 - Inconsistent terminology
 - Some "results" found too weak or even wrong
- This talk is my own combination of various results on spi-calculus

Outline

- What is spi-calculus? - Syntax and operational semantics Example protocol Attack against the example protocol Formalizing secrecy by <u>non-interference</u> Proving secrecy by <u>hedged</u> bisimulations
- Conclusions

What is spi-calculus? [Abadi-Gordon 99]

 spi-calulus = π-calculus + (sharedkey) perfect encryption primitives

The only equation is: dec(enc(Msg, key), key) = Msg

Cf. Textbook RSA is <u>malleable</u>: enc(Msg₁, pubkey) × enc(Msg₂, pubkey) = enc(Msg₁ × Msg₂, pubkey)

Syntax

$$M, N ::=$$

$$x \{M_1, \dots, M_n\}_N$$

$$P, Q, R ::=$$

$$0$$

$$\overline{M}\langle N \rangle . P$$

$$M(x) . P$$

$$P \mid Q$$

$$(\nu x) P$$

$$! P$$

$$case M of \{x_1, \dots, x_n\}_N in P$$

$$[M = N]P$$

message name ciphertext process inaction sending receiving parallel composition restriction replication decryption 2 matching

Operational Semantics (1/2): Structural Equivalence

case $\{M_1, ..., M_n\}_N$ of $\{x_1, ..., x_n\}_N$ in P $\equiv [M_1, \ldots, M_n/x_1, \ldots, x_n]P$

 $[M = M]P \equiv P \qquad !P \equiv P |!P$

 $P \mid (\nu x)Q \equiv (\nu x)(P \mid Q) \quad \text{if } x \notin free(P)$

 $P \mid \mathsf{0} \equiv P$ $P \mid Q \equiv Q \mid P$ $(P \mid Q) \mid R \equiv P \mid (Q \mid R)$

$$P \equiv P'$$

$$P \equiv P'$$

$$P \equiv P'$$

$$(\nu x)P \equiv (\nu x)P'$$

$$P \equiv Q$$

$$P \equiv Q$$

$$P \equiv Q$$

$$P \equiv Q$$

$$Q \equiv R$$

$$\equiv P \qquad \frac{1-q}{Q \equiv P} \qquad \frac{1-q}{P \equiv q}$$

P

Operational Semantics (2/2):Reaction Relation
$$\overline{x}\langle M \rangle .P \mid x(y).Q \rightarrow P \mid [M/y]Q$$
 $\underline{P \equiv P' \quad P' \rightarrow Q' \quad Q' \equiv Q}{P \rightarrow Q}$ $P \rightarrow P' \quad P' \rightarrow Q$ $P \rightarrow P' \quad (\nu x)P \rightarrow (\nu x)P'$

Outline

- What is spi-calculus? - Syntax and operational semantics Example protocol Attack against the example protocol Formalizing secrecy by non-interference Proving secrecy by <u>hedged</u> bisimulations
- Conclusions

Example: A Naive Protocol		
(Wide Mouthed Frog Protocol)		
		1. $A \rightarrow S$: $\{K_{AB}\}_{K_{AS}}$
		2. $S \rightarrow B$: $\{K_{AB}\}_{K_{BS}}$
		3. $B \rightarrow A : \{M\}_{K_{AB}}$
P_A	=	$(\nu K_{AB})\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}}\rangle.$
Ð		$c_{AB}(n)$.case n of $\{m\}_{K_{AB}}$ in 0
P_S	=	$c_{AS}(x)$.case x of $\{y\}_{K_{AS}}$ in $\overline{c_{BS}}\langle\{y\}_{K_{BS}} angle$
P_B	=	$c_{BS}(x).$ case x of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y angle$

The whole system is:

 $(\nu K_{AS})(\nu K_{BS})(P_A \mid P_S \mid P_B)$

How does the protocol run? /2 $(\nu K_{AS})(\nu K_{BS})(P_A \mid P_S \mid P_B)$ $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ $(\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}}\rangle.c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in O $c_{AS}(x).$ case x of $\{y\}_{K_{AS}}$ in $\overline{c_{BS}}\langle\{y\}_{K_{BS}}
angle$ | $c_{BS}(x)$.case x of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y\rangle$) $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ $(c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in O | case $\{K_{AB}\}_{K_{AS}}$ of $\{y\}_{K_{AS}}$ in $\overline{c_{BS}}\langle\{y\}_{K_{BS}}\rangle$ | $c_{BS}(x)$.case x of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y\rangle$) $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ $(c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in $0 \mid$ $\overline{c_{BS}}\langle \{K_{AB}\}_{K_{BS}}\rangle \mid$ $c_{BS}(x)$.case x of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y\rangle$)

How does the protocol run? 2/2 $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ $(c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in $0 \mid$ $\overline{c_{BS}}\langle\{K_{AB}\}_{K_{BS}}\rangle$ $c_{BS}(x)$.case x of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y\rangle$) $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ $(c_{AB}(n).\texttt{case } n \texttt{ of } \{m\}_{K_{AB}} \texttt{ in } \mathsf{O} \mid$ case $\{K_{AB}\}_{K_{BS}}$ of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y\rangle$) $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ $(c_{AB}(n).\texttt{case } n \texttt{ of } \{m\}_{K_{AB}} \texttt{ in } \mathsf{O} \mid$ $\overline{c_{AB}}\langle \{M\}_{K_{AB}}\rangle)$ $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ case $\{M\}_{K_{AB}}$ of $\{m\}_{K_{AB}}$ in O $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})0$

How does the protocol run? 2/2 $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ $(c_{AB}(n).\texttt{case } n \texttt{ of } \{m\}_{K_{AB}} \texttt{ in } \mathsf{O} \mid$ $\overline{c_{BS}}\langle \{K_{AB}\}_{K_{BS}}\rangle \mid$ $c_{BS}(x)$.case x of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y\rangle$) $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ $(c_{AB}(n).\texttt{case } n \texttt{ of } \{m\}_{K_{AB}} \texttt{ in } \mathsf{O} \mid$ case $\{K_{AB}\}_{K_{BS}}$ of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y\rangle$) $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ $(c_{AB}(n).\texttt{case } n \texttt{ of } \{m\}_{K_{AB}} \texttt{ in } \mathsf{O} \mid$ $\overline{c_{AB}}\langle \{M\}_{K_{AB}}\rangle$) $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ case $\{M\}_{K_{AB}}$ of $\{m\}_{K_{AB}}$ in O $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})0$

Outline

- What is spi-calculus? - Syntax and operational semantics Example protocol Attack against the example protocol Formalizing secrecy by <u>non-interference</u> Proving secrecy by <u>hedged</u> bisimulations
- Conclusions

Parallel runs of the protocol
(2/2)

$$P_{A} = (\nu K_{AB})\overline{c_{AS}}\langle\{K_{AB}\}_{K_{AS}}\rangle_{cAB}(n).\text{case } n \text{ of } \{m\}_{K_{AB}} \text{ in } 0$$

$$P_{S} = c_{AS}(x).\text{case } x \text{ of } \{y\}_{K_{AS}} \text{ in } \overline{c_{BS}}\langle\{y\}_{K_{BS}}\rangle$$

$$\mid c'_{BS}(x').\text{case } x' \text{ of } \{y'\}_{K_{BS}} \text{ in } \overline{c_{ES}}\langle\{y'\}_{K_{ES}}\rangle$$

$$P_{B} = c_{BS}(x).\text{case } x \text{ of } \{y\}_{K_{BS}} \text{ in } \overline{c_{AB}}\langle\{M\}_{y}\rangle$$

$$\mid (\nu K_{BE})\overline{c'_{BS}}\langle\{K_{BE}\}_{K_{BS}}\rangle_{cBE}(n').\text{case } n' \text{ of } \{n'\}_{K_{BE}} \text{ in } 0$$

$$P_{E} = c_{ES}(x').\text{case } x' \text{ of } \{y'\}_{K_{ES}} \text{ in } \overline{c_{BE}}\langle\{M'\}_{y'}\rangle$$

Exercise (?)

Write down the reduction of (vK_{AS})(vK_{BS})(vK_{ES})(P_A | P_S | P_B | P_E).

What if E is evil in fact?

 Assumption: attacker has full access to open channels (Dolev-Yao model)
 Result: not only M' but also M may leak!

 $\begin{array}{l} 1'_{a}, \ B \to E(S) \ : \ \{K_{BE}\}_{K_{BS}} \\ 2. \ E(S) \to B \ : \ \{K_{BE}\}_{K_{BS}} \\ 1'_{b}, \ E(B) \to S \ : \ \{K_{BE}\}_{K_{BS}} \\ 2'. \ S \to E \ : \ \{K_{BE}\}_{K_{ES}} \\ 3. \ B \to E(A) \ : \ \{M\}_{K_{BE}} \end{array}$

 $P'_E = c'_{BS}(z).\overline{c_{BS}}\langle z \rangle.c'_{BS}\langle z \rangle.$ $c_{ES}(x')$.case x' of $\{y'\}_{K_{ES}}$ in $c_{AB}(n)$.case n of $\{m\}_{u'}$ in DOEVII_m $P'_E \mid (\nu K_{AS})(\nu K_{BS})(P_A \mid P_S \mid P_B)$ $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})(\nu K_{BE})$ $(c'_{BS}(z).\overline{c_{BS}}\langle z\rangle.c'_{BS}\langle z\rangle.$ $c_{ES}(x').$ case x' of $\{y'\}_{K_{ES}}$ in $c_{AB}(n)$.case n of $\{m\}_{y'}$ in DoEvil_m $\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}}\rangle.c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in O | $c_{AS}(x)$.case x of $\{y\}_{K_{AS}}$ in $\overline{c_{BS}}\langle\{y\}_{K_{BS}}\rangle$ | $c'_{BS}(x')$.case x' of $\{y'\}_{K_{BS}}$ in $\overline{c_{ES}}\langle\{y'\}_{K_{ES}}\rangle$ | $c_{BS}(x)$.case x of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y
angle$ | $c'_{BS}\langle \{K_{BE}\}_{K_{BS}}\rangle c_{BE}(n')$.case n' of $\{m'\}_{K_{BE}}$ in 0

 $P'_E = c'_{BS}(z).\overline{c_{BS}}\langle z \rangle.c'_{BS}\langle z \rangle.$ $c_{ES}(x')$.case x' of $\{y'\}_{K_{ES}}$ in $c_{AB}(n)$.case n of $\{m\}_{y'}$ in DoEvil_m $P'_E \mid (\nu K_{AS})(\nu K_{BS})(P_A \mid P_S \mid P_B)$ $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})(\nu K_{BE})$ $(\overline{c_{BS}}\langle \{K_{BE}\}_{K_{BS}}\rangle . c'_{BS}\langle \{K_{BE}\}_{K_{BS}}\rangle.$ $c_{ES}(x'). ext{case } ilde{x'} ext{ of }\{y'\}_{K_{ES}} ext{ in }$ $c_{AB}(n).$ case n of $\{m\}_{y'}$ in DoEvil_m | $\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}}\rangle.c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in O $c_{AS}(x)$.case x of $\{y\}_{K_{AS}}$ in $\overline{c_{BS}}\langle\{y\}_{K_{BS}}\rangle$ | $c'_{BS}(x')$.case x' of $\{y'\}_{K_{BS}}^{r}$ in $\overline{c_{ES}}\langle\{y'\}_{K_{ES}}\rangle$ | $c_{BS}(x)$.case x of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y\rangle \mid$ $c_{BE}(n')$.case n' of $\{m'\}_{K_{BE}}$ in 0)

 $P'_E = c'_{BS}(z).\overline{c_{BS}}\langle z \rangle.c'_{BS}\langle z \rangle.$ $c_{ES}(x')$.case x' of $\{y'\}_{K_{ES}}$ in $c_{AB}(n)$.case n of $\{m\}_{y'}$ in DoEvil_m $P'_E \mid (\nu K_{AS})(\nu K_{BS})(P_A \mid P_S \mid P_B)$ $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})(\nu K_{BE})$ $(\overline{c_{BS}}\langle \{K_{BE}\}_{K_{BS}}\rangle . c'_{BS}\langle \{K_{BE}\}_{K_{BS}}\rangle.$ $c_{ES}(x').{ t case}\ \overline{x'}$ of $\{y'\}_{K_{ES}}$ in $c_{AB}(n).$ case n of $\{m\}_{y'}$ in DoEvil_m | $\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}}\rangle . c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in O $c_{AS}(x)$.case x of $\{y\}_{K_{AS}}$ in $\overline{c_{BS}}\langle\{y\}_{K_{BS}}\rangle$ $c'_{BS}(x')$.case x' of $\{y'\}_{K_{BS}}$ in $\overline{c_{ES}}\langle\{y'\}_{K_{ES}}\rangle$ | $c_{BS}(x)$.case x of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y
angle$ | $c_{BE}(n')$.case n' of $\{m'\}_{K_{BE}}$ in O)

 $P'_E = c'_{BS}(z).\overline{c_{BS}}\langle z \rangle.c'_{BS}\langle z \rangle.$ $c_{ES}(x')$.case x' of $\{y'\}_{K_{ES}}$ in $c_{AB}(n)$.case n of $\{m\}_{y'}$ in DoEvil_m $P'_E \mid (\nu K_{AS})(\nu K_{BS})(P_A \mid P_S \mid P_B)$ $\rightarrow^* (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})(\nu K_{BE})$ $(c'_{BS}\langle \{K_{BE}\}_{K_{BS}}\rangle.$ $c_{ES}(x').{ t case}\,\,x'$ of $\{y'\}_{K_{ES}}$ in $c_{AB}(n).$ case n of $\{m\}_{u'}$ in DoEvil_m | $\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}}\rangle . c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in O $c_{AS}(x)$.case x of $\{y\}_{K_{AS}}$ in $\overline{c_{BS}}\langle\{y\}_{K_{BS}}\rangle$ | $c'_{BS}(x')$.case x' of $\{y'\}_{K_{BS}}^{r}$ in $\overline{c_{ES}}\langle\{y'\}_{K_{ES}}\rangle$ | $\overline{c_{AB}}\langle \{M\}_{K_{BE}}\rangle$ $c_{BE}(n')$.case n' of $\{m'\}_{K_{BE}}$ in 0)

 $P'_E = c'_{BS}(z).\overline{c_{BS}}\langle z \rangle.c'_{BS}\langle z \rangle.$ $c_{ES}(x')$.case x' of $\{y'\}_{K_{ES}}$ in $c_{AB}(n)$.case n of $\{m\}_{y'}$ in DoEvil_m $P'_E \mid (\nu K_{AS})(\nu K_{BS})(P_A \mid P_S \mid P_B)$ $\Rightarrow^* (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})(\nu K_{BE})$ $(c'_{BS}\langle \{K_{BE}\}_{K_{BS}}\rangle.$ $c_{ES}(x').{ t case}\,\,x'$ of $\{y'\}_{K_{ES}}$ in $c_{AB}(n).$ case n of $\{m\}_{u'}$ in DoEvil_m | $\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}}\rangle . c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in O $c_{AS}(x)$.case x of $\{y\}_{K_{AS}}$ in $\overline{c_{BS}}\langle\{y\}_{K_{BS}}\rangle$ $c'_{BS}(x')$.case x' of $\{y'\}_{K_{BS}}$ in $\overline{c_{ES}}\langle\{y'\}_{K_{ES}}
angle$ | $\overline{c_{AB}}\langle \{M\}_{K_{BE}}\rangle \mid$ $c_{BE}(n').case n' of \{m'\}_{K_{BE}} in 0)$

 $P'_E = c'_{BS}(z).\overline{c_{BS}}\langle z \rangle.c'_{BS}\langle z \rangle.$ $c_{ES}^{-}(x')$.case x' of $\{y'\}_{K_{ES}}$ in $c_{AB}(n)$.case n of $\{m\}_{u'}$ in DoEvil_m $P'_E \mid (\nu K_{AS})(\nu K_{BS})(P_A \mid P_S \mid P_B)$ $\rightarrow^* (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})(\nu K_{BE})$ $(c_{ES}(x').case \; x' \; ext{of} \; \{y'\}_{K_{ES}} \; ext{in}$ $c_{AB}(n)$.case n of $\{m\}_{y'}$ in DoEvil_m $\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}}\rangle.c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in O $c_{AS}(x)$.case x of $\{y\}_{K_{AS}}$ in $\overline{c_{BS}}\langle\{y\}_{K_{BS}}\rangle$ $\overline{c_{ES}}\langle \{K_{BE}\}_{K_{ES}}\rangle \mid$ $\overline{c_{AB}}\langle \{M\}_{K_{BE}}\rangle$ $c_{BE}(n')$.case n' of $\{m'\}_{K_{BE}}$ in 0)

$$P'_{E} = c'_{BS}(z).\overline{c_{BS}}\langle z \rangle.\overline{c'_{BS}}\langle z \rangle.$$

$$c_{ES}(x').\text{case } x' \text{ of } \{y'\}_{K_{ES}} \text{ in }$$

$$c_{AB}(n).\text{case } n \text{ of } \{m\}_{y'} \text{ in } \text{DoEvil}_{m}$$

$$P'_{E} \mid (\nu K_{AS})(\nu K_{BS})(P_{A} \mid P_{S} \mid P_{B})$$

$$(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})(\nu K_{BE})$$

$$(c_{AB}(n).\text{case } n \text{ of } \{m\}_{K_{BE}} \text{ in } \text{DoEvil}_{m} \mid |$$

$$\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}} \rangle.c_{AB}(n).\text{case } n \text{ of } \{m\}_{K_{AB}} \text{ in } 0$$

$$c_{AS}(x).\text{case } x \text{ of } \{y\}_{K_{AS}} \text{ in } \overline{c_{BS}}\langle \{y\}_{K_{BS}} \rangle \mid$$

$$\overline{c_{AB}}\langle \{M\}_{K_{BE}} \rangle \mid$$

$$c_{BE}(n').\text{case } n' \text{ of } \{m'\}_{K_{BE}} \text{ in } 0)$$

$$P'_{E} = c'_{BS}(z).\overline{c_{BS}}\langle z \rangle.\overline{c'_{BS}}\langle z \rangle.$$

$$c_{ES}(x').\text{case } x' \text{ of } \{y'\}_{K_{ES}} \text{ in }$$

$$c_{AB}(n).\text{case } n \text{ of } \{m\}_{y'} \text{ in } \text{DoEvil}_{m}$$

$$P'_{E} \mid (\nu K_{AS})(\nu K_{BS})(P_{A} \mid P_{S} \mid P_{B})$$

$$(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})(\nu K_{BE})$$

$$(c_{AB}(n).\text{case } n \text{ of } \{m\}_{K_{BE}} \text{ in } \text{DoEvil}_{m} \mid |$$

$$\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}}\rangle.c_{AB}(n).\text{case } n \text{ of } \{m\}_{K_{AB}} \text{ in } 0$$

$$c_{AS}(x).\text{case } x \text{ of } \{y\}_{K_{AS}} \text{ in } \overline{c_{BS}}\langle \{y\}_{K_{BS}}\rangle \mid$$

$$\overline{c_{AB}}\langle \{M\}_{K_{BE}}\rangle \mid$$

$$c_{BE}(n').\text{case } n' \text{ of } \{m'\}_{K_{BE}} \text{ in } 0$$

$$P'_{E} = c'_{BS}(z).\overline{c_{BS}}\langle z \rangle.\overline{c'_{BS}}\langle z \rangle.$$

$$c_{ES}(x').\text{case } x' \text{ of } \{y'\}_{K_{ES}} \text{ in }$$

$$c_{AB}(n).\text{case } n \text{ of } \{m\}_{y'} \text{ in } \text{DoEvil}_{m}$$

$$P'_{E} \mid (\nu K_{AS})(\nu K_{BS})(P_{A} \mid P_{S} \mid P_{B})$$

$$\Rightarrow^{*} (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})(\nu K_{BE})$$

$$(\text{DoEvil}_{M} \mid |$$

$$\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}}\rangle.c_{AB}(n).\text{case } n \text{ of } \{m\}_{K_{AB}} \text{ in } 0$$

$$c_{AS}(x).\text{case } x \text{ of } \{y\}_{K_{AS}} \text{ in } \overline{c_{BS}}\langle \{y\}_{K_{BS}}\rangle \mid$$

$$c_{BE}(n').\text{case } n' \text{ of } \{m'\}_{K_{BE}} \text{ in } 0)$$

Outline

What is spi-calculus? - Syntax and operational semantics Example protocol Attack against the example protocol Formalizing secrecy by <u>non-interference</u> Proving secrecy by <u>hedged</u> bisimulations Conclusions

Formalizing secrecy by <u>non-</u> interference

 "Definition": Process P keeps message x totally secret if [M/x]P and [N/x]P are "equivalent" for any M and N

Cf. partial secrecy: [M/x]P and [N/x]P are equivalent for any M and N satisfying some condition (e.g., M mod 2 = N mod 2)

♦ What equivalence should we take?
 ⇒ (Strong) <u>barbed equivalence</u>

Definitions (1/2)

 $P \equiv (vx_1)...(vx_n)(c(y).Q | R)$ for some x₁, ..., x_n (distinct from c), y, Q and R. Similar for output.

- A (strong) <u>barbed simulation</u> S is a binary relation on processes such that P S Q implies:
 - for each barb β , if $P \downarrow \beta$, then $Q \downarrow \beta$, and

- if $P \rightarrow P'$, then $Q \rightarrow Q'$ and P' S Q' for some Q

 S is a barbed <u>bisimulation</u> if both S and S⁻¹ are barbed simulations

Definitions (2/2)

- Barbed <u>bisimilarity</u> is the largest barbed bisimulation
 - Equals the union of all barbed bisimulations, which is also a barbed bisimulation
- Processes P and Q are <u>barbed equivalent</u> if P | R and Q | R are barbed bisimilar for every R

 $(\nu k)\overline{c}\langle \{x\}_k\rangle$ keeps x totally secret. I.e., $(\nu k)\overline{c}\langle \{M\}_k\rangle$ and $(\nu k)\overline{c}\langle \{N\}_k\rangle$ are barbed equivalent for any M and N. Proof sketch: given M and N, take $S = \{ (P, Q) \mid P \equiv (vk) [\{M\}_{k}/y]R, \}$ $Q \equiv (vk) [\{N\}_k/y]R,$ $k \notin free(R)$

and prove it to be a barbed bisimulation by case analysis (and induction) on the reduction rules

 $\bullet P = (\nu k) (\overline{c} \langle \{x\}_k \rangle \mid$ c(y).case y of $\{z\}_k$ in $\overline{c}\langle k\rangle$) does not keep x totally secret. Indeed, [M/x]P and [N/x]P are not barbed equivalent for any $M \neq N$. Proof: given M and N, take $R = c(y).\overline{c}\langle y \rangle.c(k).$ case y of $\{m\}_k$ in [m = M] world $\langle hello \rangle$ Cf. $P = (\nu k)(\overline{k}\langle x \rangle \mid k(y).\overline{c}\langle k \rangle)$ does keep

x secret

Side Step: The Vice of May Testing Equivalence

 Many papers (including Abadi and Gordon's original work!) use <u>may testing</u> <u>equivalence</u> for defining secrecy by non-interference, but it is too weak

Definitions • Process P may eventually exhibit barb β , written $P \downarrow \beta$, if $P \rightarrow ... \rightarrow P' \downarrow \beta$ for

some P' Processes P and Q are may testing equivalent if $(\mathsf{P} | \mathsf{R}) \Downarrow \beta \iff (\mathsf{Q} | \mathsf{R}) \Downarrow \beta$ for every R and β

So what's wrong?

 Surprisingly, $P = (\nu d)(\overline{d}\langle\rangle \mid d().\overline{c}\langle\rangle)$ and $Q = (\nu d)(\overline{d}\langle\rangle \mid d().\overline{c}\langle\rangle \mid d().0)$ are may testing equivalent. As a result, processes like if x > 0 then P else Q are regarded as keeping x totally secret (under may testing equivalence) But the leak is possible!

Outline

What is spi-calculus? - Syntax and operational semantics Example protocol Attack against the example protocol Formalizing secrecy by <u>non-interference</u> Proving secrecy by <u>hedged</u> bisimulations Conclusions

36

Hedged Bisimulation: Motivation

- Direct proof of barbed equivalence is difficult because of "arbitrary R"
- ⇒ Devise a proof technique without "arbitrary R"
- What can R do?
 - Gain "knowledge" by receiving from a known channel
 - Send to a known channel a message synthesized from the knowledge

Definitions (1/4)

- A hedge H is a binary relation on messages
- → H → M (messages M and N <u>can be</u> <u>synthesized from</u> hedge H) is defined by induction:

 $\begin{array}{c} (M,N) \in \mathcal{H} \\ \hline \mathcal{H} \vdash M \leftrightarrow N \end{array} \quad \begin{array}{c} \mathcal{H} \vdash M_1 \leftrightarrow N_1 \quad \mathcal{H} \vdash M_2 \leftrightarrow N_2 \\ \hline \mathcal{H} \vdash \{M_1\}_{M_2} \leftrightarrow \{N_1\}_{N_2} \end{array}$

 $\begin{array}{ccc} \mathcal{H} \vdash \{M_1\}_{M_2} \leftrightarrow \{N_1\}_{N_2} & \mathcal{H} \vdash M_2 \leftrightarrow N_2 \\ \hline \mathcal{H} \vdash M_1 \leftrightarrow N_1 & \mathcal{H} \vdash x \leftrightarrow x \end{array} \\ \end{array}$

Definitions (2/4)

- A <u>hedged simulation</u> is a set X of triples (P, Q, H) that satisfies:
- 1. For any $P \to P'$, there exists some Q'such that $Q \to Q'$ and $(P', Q', \mathcal{H}) \in X$. 2. If for some $\mathcal{H} \vdash c \leftrightarrow d$, $P \equiv (\nu x_1) \dots (\nu x_m) (\overline{c} \langle M \rangle P_1 \mid P_2)$ $x_i \not\in \{c\} \cup free(fst(\mathcal{H})),$ then $Q \equiv (\nu y_1) \dots (\nu y_n) (\overline{d} \langle N \rangle Q_1 \mid Q_2)$ $y_i \not\in \{d\} \cup free(snd(\mathcal{H}))$ and $(P_1 | P_2, Q_1 | Q_2, \mathcal{H} \cup (M, N)) \in X$.

Definitions (3/4)

3. If for some $\mathcal{H} \vdash c \leftrightarrow d$, $P \equiv (\nu x_1) \dots (\nu x_m) (c(z) \cdot P_1 \mid P_2)$ $x_i \not\in \{c\} \cup free(fst(\mathcal{H})),$ then $Q \equiv (\nu y_1) \dots (\nu y_n) (d(z) Q_1 | Q_2)$ $y_i \not\in \{d\} \cup free(snd(\mathcal{H}))$ and for any $\mathcal{H} \vdash M \leftrightarrow N$, $([M/z]P_1 | P_2, [N/z]Q_1 | Q_2, \mathcal{H}) \in X.$ 4. If $\mathcal{H} \vdash M_1 \leftrightarrow N_1$ and $\mathcal{H} \vdash M_2 \leftrightarrow N_2$, then $M_1 = M_2$ implies $N_1 = N_2$. 5. If $\mathcal{H} \vdash \{M_1\}_{M_2} \leftrightarrow N$ and $\mathcal{H} \vdash M_2 \leftrightarrow N_2$, then $N = \{N_1\}_{N_2}$ for some N_1 .

Definitions (4/4)

- A hedged simulation X is a hedged bisimulation if X⁻¹ is also a hedged simulation, where X⁻¹ is defined as:
 - $\{(Q, P, H^{-1}) \mid (P, Q, H) \in X\}$
- <u>Hedged bisimilarity</u> is the largest hedged bisimulation (i.e., the union of all hedged bisimulations, which is also a hedged bisimulation)
- Notation: P ~_H Q ⇔ (P, Q, H) is in the hedged bisimilarity

42 Caution: α -Conversion of **Hedged Bisimulation** • Every (P, Q, H) \in X is regarded as α -equivalent to $(\sigma P, Q, \{ (\sigma M, N) \mid (M, N) \in H \})$ for every dom(σ) \supseteq free(P) \cup free(fst(H)) \bullet Every (P, Q, H) \in X is regarded as α -equivalent to $(\mathsf{P}, \sigma \mathsf{Q}, \{ (\mathsf{M}, \sigma \mathsf{N}) \mid (\mathsf{M}, \mathsf{N}) \in \mathsf{H} \})$ for every dom(σ) \supseteq free(Q) \cup free(snd(H)) Everything in the rest is considered "up to" this α -equivalence

 For any M and N, $(\nu k)\overline{c}\langle \{M\}_k\rangle.0\sim_{\{(c,c)\}}(\nu k)\overline{c}\langle \{N\}_k\rangle.0$ Proof: take $X = \{((\nu k)\overline{c}\langle \{M\}_k\rangle.0,$ $\overline{(\nu k)\overline{c}}\langle \{N\}_k\rangle.0,$ $\{(c,c)\}\}$ $\cup \{(0,$ 0, $\{(c, c), (\{M\}_k, \{N\}_k)\}\}$ and check conditions 1-5.

 $\langle \nu k \rangle (\nu n) \overline{c} \langle \{n\}_k \rangle . (\nu m) \overline{c} \langle m \rangle \sim_{\{(c,c)\}}$ $(\nu k)(\nu n)\overline{c}\langle \{n\}_k\rangle.\overline{c}\langle n\rangle$ Proof: take $X = \{ ((\nu k)(\nu n)\overline{c}\langle \{n\}_k \rangle . (\nu m)\overline{c}\langle m \rangle,$ $(\nu k)(\nu n)\overline{c}\langle \{n\}_k\rangle.\overline{c}\langle n\rangle,$ $\{(c,c)\}\}$ $\cup \{((\nu m)\overline{c}\langle m\rangle,$ $\overline{c}\langle n \rangle$, $\{(c,c), (\{n\}_k, \{n\}_k)\}\}$ {(0, 0. $\{(c, c), (\{n\}_k, \{n\}_k), (m, n)\}\}\}$

 $(\nu k)(\nu n)(\nu l)\overline{c}\langle\{\{n\}_k\}_l\rangle.(\nu m)\overline{c}\langle m\rangle \sim_{\{(c,c)\}} (\nu k)(\nu n)\overline{c}\langle\{n\}_k\rangle.(\nu m)\overline{c}\langle m\rangle$ Proof: take

 $X = \{ ((\nu k)(\nu n)(\nu l)\overline{c} \langle \{\{n\}_k\}_l \rangle (\nu m)\overline{c} \langle m \rangle,$ $(\nu k)(\nu n)\overline{c}\langle \{n\}_k\rangle.(\nu m)\overline{c}\langle m\rangle,$ $\{(c,c)\}\}$ $\bigcup \quad \{((\nu m)\overline{c}\langle m\rangle,$ $(\nu m)\overline{c}\langle m\rangle,$ $\{(c,c), (\{\{n\}_k\}_l, \{n\}_k)\}\}$ $\{(0,$ 0 $\{(c,c), (\{\{n\}_k\}_l, \{n\}_k), (m,m)\}\}\}.$

Theorem

Hedged bisimilarity is sound w.r.t. barbed equivalence. I.e., if $P \sim_H Q$ for $H = \{ (x, x) \mid x \in free(P) \cup free(Q) \},\$ then P and Q are barbed equivalent. Proof sketch: take $S = \{ (P', Q') \mid P \sim_H Q, \}$ $P' \equiv (vx_1)...(vx_l) (P \mid [M_1,...,M_n/z_1,...,z_n]R),$ $Q' \equiv (vy_1)...(vy_m) (Q | [N_1,...,N_n/z_1,...,z_n]R),$ $H \vdash M_1 \leftrightarrow N_1, ..., H \vdash M_n \leftrightarrow N_n,$ free(R) distinct from free(P), free(Q), and free(H)) } and prove it to be a barbed bisimulation by case analysis (and induction) on the reduction rules.

Real Example: Fixed Version of Previous Protocol 1. $A \rightarrow S$: $\{K_{AB}, B\}_{K_{AS}}$ 2. $S \rightarrow B$: $\{K_{AB}, A\}_{K_{BS}}$ 3. $B \rightarrow A$: $\{M\}_{K_{AB}}$ 1'. $B \rightarrow S$: $\{K_{BE}, E\}_{K_{BS}}$ 2'. $S \rightarrow E$: $\{K_{BE}, B\}_{K_{ES}}$ $\mathbf{3'}. \ E \rightarrow B : \{M'\}_{K_{BE}}$

As Spi-Calculus Processes...

 $\overline{(\nu K_{AB})}\overline{c_{AS}}\langle\{K_{AB},B\}_{K_{AS}}\rangle.$ $c_{AB}(n)$.case n of $\{m\}_{K_{AB}}$ in O $c_{AS}(x)$.case x of $\{y,b\}_{K_{AS}}$ in $[b = B]\overline{c_{BS}}\langle\{y\}_{K_{BS}}\rangle$ $c'_{BS}(x')$.case x' of $\{y',e\}_{K_{BS}}$ in $[e = E]\overline{c_{ES}}\langle\{y'\}_{K_{ES}}\rangle$ $c_{BS}(x)$.case x of $\{y,a\}_{K_{BS}}$ in $[a = A]\overline{c_{AB}}\langle \{z\}_y\rangle$ $(\nu K_{BE})c'_{BS}\langle \{K_{BE}, E\}_{K_{BS}}\rangle.$ $c_{BE}(n').$ case n' of $\{m'\}_{K_{BE}}$ in O

Exercise (?)

 Write down the reduction(s) of P'_E | (vK_{AS})(vK_{BS})(P_A | P_S | P_B) for the same attacker P'_E as before, for the fixed version of P_A, P_S, and P_B. Pinpoint where the attack fails.

 $(vK_{AS})(vK_{BS})(P_A | P_S | P_B)$ keeps z totally secret. I.e., $P = (vK_{AS})(vK_{BS})(P_A | P_S | [M/z]P_B)$ and $Q = (vK_{AS})(vK_{BS})(P_A | P_S | [N/z]P_B)$ are barbed equivalent for any M and N.

50

Proof Sketch

• Let H = { (x, x) | $x \in free(P) \cup free(Q)$ }

We construct some hedged bisimulation
 X ⇒ (P, Q, H)

 The X is far from minimal, but this is fine as far as X is a hedged bisimulation

• It is a nightmare to write down minimal X for real...

Exercise (?)

 Try to prove the total secrecy of z in the original version of this protocol by means of hedged bisimulation. Explain how the "proof" fails.

56 Side Step II: Completeness of **Hedged Bisimulation** Conjecture: Hedged bisimilarity is complete with respect to barbed equivalence. I.e., if P and Q are barbed equivalent, then $P \sim_{H} Q$ for $H = \{ (x, x) \mid x \in free(P) \cup free(Q) \}$ - Proved for "structurally image finite" processes, but not for the general case (to my knowledge)

Outline

- What is spi-calculus? - Syntax and operational semantics Example protocol Attack against the example protocol Formalizing secrecy by non-interference Proving secrecy by <u>hedged</u> bisimulations
- Conclusions

Other Topics in Spi-Calculus

- Other bisimulations [Abadi-Gordon 98] [Boreale-DeNicola-Pugliese 99] [Elkjær-Höhle-Hüttel-Overgård 99]
 - More complex and "less complete"
- Secrecy by typing [Abadi 97]
 [Abadi-Blanchet 01]
- Authenticity by typing [Gordon-Jeffery 01]
 [Gordon-Jeffery 02] [Blanchet 02]
 - Cf. http://www.soe.ucsc.edu/~abadi/ http://www.di.ens.fr/~blanchet/ http://netlib.bell-labs.com/who/ajeffrey/ etc.