Negligible Events, Game Transformation and Formal Proofs of Cryptographic Protocols

Jesús Almansa

Tatsuaki Okamoto

NTT Labs Information Sharing Platform

1st JSIAM - FAIS Workshop University of Tokyo July 26, 2006

Consider a typical security definition in the attack-based approach: 1. $Game^0 \stackrel{\text{def}}{=} [x_1 \stackrel{\diamond}{\leftarrow} A^1, x_2 \stackrel{\diamond}{\leftarrow} A^2(x_1), \dots, x_n \stackrel{\diamond}{\leftarrow} A(x_1, \dots, x_{n-1})]_k$

- **2.** $ADV_A^0(k) \stackrel{\text{def}}{=} P[x_n = x_i]$ (x_i not an input of A)
- 3. Security: $|ADV_A^0(k) r|$ is negligible as a function of k Here,
- A_i, A are PPT algorithms or finite sets
- $x_i \stackrel{\diamond}{\leftarrow} A_i(x_1, \dots, x_{i-1})$ represents the assignment to x_i of a value sampled at random from the distribution φ of A_i wrt values of (some among) x_1, \dots, x_{i-1} .

To prove (*), one provides a "slightly modified" game ...

(*)

1. $\operatorname{Game}^1 \stackrel{\text{def}}{=} [y_1 \stackrel{\diamond}{\leftarrow} B^1, y_2 \stackrel{\diamond}{\leftarrow} B^2(y_1), \dots, y_n \stackrel{\diamond}{\leftarrow} A(y_1, \dots, y_{n-1})]_k$

2. $ADV_A^1(k) \stackrel{\text{def}}{=} P[y_n = y_j]$ (y_j not an input of A)

... and one shows that

a. $|ADV_A^0(k) - ADV_A^1(k)|$ is negligible as a function of k

b. $|ADV_A^1(k) - r|$ is negligible as a function of k

Rationale:

if $ADV_A^0(k)$ and $ADV_A^1(k)$ are "close", and $ADV_A^1(k)$ is "close to r", then $ADV_A^0(k)$ is "close to r".

Intuition: $Game^0$ and $Game^1$ have "similar structures", but the latter is easier to analyse.

This is the *game-transformation* technique for proving security of crypto protocols. [Shoup,Bellare-Rogaway,GGM] Benefits:

- simplicity (understanding)
- proof pattern (just like Modus Ponens is)
- rigorous (mathematical language)
- exact bounds (security bounds)
- practical (extensively used)
- automation (computer aid) [Blanchet-Pointcheval]

By no means it is the final solution to proofs of crypto protocols! It is just that its benefits are too important.

However: The attack-based approach is just one paradigm among other definitional paradigms for crypto security.

In particular, *simulation-based* approaches fit better to study concurrent multiparty protocols: PCL, PIOA, PPT, RS, UC.

 no explicit proof technique for simulation-based approaches with same benefits of game-transformation technique. (except maybe for [PIOA])

Our aim: apply the game-transformation proof technique in simulation-based approaches.

agenda

abstraction

reality

formality

abstraction

reality formality

20		\mathbf{r}	01	n
	51			 л

formality

abstraction

abstraction

reality

formality

In technical terms, the elements we deal with are

- a probability space family $\llbracket \{ (\Omega_k, P_k) \}_{k \in \mathbb{N}} \rrbracket = \{ \texttt{Game}_k \}_{k \in \mathbb{N}}$
- a random ensemble $\llbracket \{X_k\}_{k \in \mathbb{N}} \rrbracket = \{ \mathtt{ADV}_A(k) \}_{k \in \mathbb{N}}$

And the problem we want to solve is:

Is there a "natural" way h of transforming $\{(\Omega_k, P_k)\}_{k \in \mathbb{N}}$ s.t. $\{X_k\}_{k \in \mathbb{N}} \approx h(\{X_k\}_{k \in \mathbb{N}})$ (possibly under certain extra assumptions)

Answer: Yes!

abstraction

reality

formality

Given a psf $\{(\Omega_k, P_k)\}_{k \in \mathbb{N}}$, an event ensemble is a sequence $X = \{X_k\}_{k \in \mathbb{N}}$, where X_k is a boolean random variable on Ω_k for each k.

• $X_k : \Omega_k \to \{0, 1\}$ • $X_k = 1$ is an event of Ω_k .

To each $X = \{X_k\}_{k \in \mathbb{N}}$ there corresponds a function $F^X : k \mapsto P_k[X_k = 1]$.

Def. Let $\Omega = \{(\Omega_k, P_k)\}_{k \in \mathbb{N}}$ be a psf. Let $r \in [0, 1]$.

- 1. X is r-negligible iff F^X is negligibly close to r.
- 2. \mathfrak{N}_r is the collection of all *r*-negligible ensembles.

3.
$$\mathfrak{N} = \cup_r \mathfrak{N}_r$$

abstraction

reality

formality

For instance, $\mathbf{0} \in \mathfrak{N}_0$ and $\mathbf{1} \in \mathfrak{N}_1$.

In principle, there is an uncountable number of \mathfrak{N}_r 's; but in reality many of them will be empty.

A natural way of relating ensembles: **Def.** Let $\Omega = \{(\Omega_k, P_k)\}_{k \in \mathbb{N}}$ be a psf. We write $X \stackrel{s}{\approx} Y$, and say that X is statistically indistinguishable to Y iff F^X is negligibly close to F^Y .

Some properties:

- $\stackrel{\,\,{}_\circ}{\sim}$ is an equivalence relation.
- \mathfrak{N}_r is a class modulo $\stackrel{s}{\approx}$, for any $r \in [0, 1]$.
- If $X\overline{Y} \stackrel{s}{\approx} 0$ and $Y \in \mathfrak{N}_0$ then $X \in \mathfrak{N}_0$.
- Shoup's Difference Lemma: If $X\overline{Z} \stackrel{*}{\approx} Y\overline{Z}$ and $Z \in \mathfrak{N}_0$, then $X \stackrel{*}{\approx} Y$.

abstraction

reality

formality

So far we have focused on a single psf. However, we are trying to explain how to transform a psf into another that is structurally close.

Def. Consider $\langle \Omega, \mathfrak{N} \rangle$ and $\langle \Omega', \mathfrak{N}' \rangle$. A morphism is a transformation $h = \{h_k\}_{k \in \mathbb{N}}$ such that

• $h_k : \Omega_k \to \Omega'_k;$ • $h^{-1}(N) \in \mathfrak{N} \text{ for all } N \in \mathfrak{N}'.$

This is what we are looking for!

Assume $\langle \Omega, \mathfrak{N} \rangle$ is given and let *X* be an ensemble for Ω . If there exists a morphism *h* into $\langle \Omega', \mathfrak{N}' \rangle$ such that $h(X) \in \mathfrak{N}'$, then $X \in \mathfrak{N}$.

abstraction reality formality	reality	

abstraction

reality

formality

A model for our theory is anything that gives rise to well-defined psf's.

E.g., a specification/programming language to describe/define interaction of PPT entities, with a well defined *probabilistic semantics*.

What could we prove?

- unconditional security in both attack-based and simulation-based approach via game transformation.
- computational security in attack-based approach via direct arguments

1.

abstraction

reality

formality

Study case: ElGamal encryption

$$\begin{bmatrix} x \stackrel{\mathbf{u}}{\leftarrow} \mathbb{Z}_q, \ \alpha \leftarrow \gamma^x \\ (m_0, m_1) \stackrel{\diamond}{\leftarrow} A(\alpha), \\ b \stackrel{\mathbf{u}}{\leftarrow} \{0, 1\} \\ y \stackrel{\mathbf{u}}{\leftarrow} \mathbb{Z}_q, \ \beta \leftarrow \gamma^y, \ \delta \leftarrow \alpha^y, \ \zeta \leftarrow \delta \cdot m_b \\ \hat{b} \stackrel{\diamond}{\leftarrow} A(\alpha, \beta, \zeta) \end{bmatrix}$$

2.
$$ADV_A(k) = |P[b = \hat{b}] - 1/2|$$

3. Security: $ADV_A(k)$ is negligible, as a function of k, for all PPT A.

Security of ElGamal encryption is claimed to hold under the Decisional Diffie-Hellman assumption (DDH)

1.

abstraction

reality

formality

Decisional Diffie-Hellman

$$\begin{bmatrix} x \stackrel{\mathbf{u}}{\leftarrow} \mathbb{Z}_q, \ \alpha \leftarrow \gamma^x \\ y \stackrel{\mathbf{u}}{\leftarrow} \mathbb{Z}_q, \ \beta \leftarrow \gamma^y, \\ z \stackrel{\mathbf{u}}{\leftarrow} \mathbb{Z}_q \\ d \stackrel{\mathbf{u}}{\leftarrow} \{0, 1\} \\ \delta \leftarrow \begin{cases} \alpha^y \ \text{, if } d = 0 \\ \gamma^z \ \text{, if } d = 1 \\ \hat{d} \stackrel{\diamond}{\leftarrow} D(\alpha, \beta, \delta) \end{bmatrix}$$

2. $ADV_D(k) = |P[d = \hat{d}] - 1/2|$

3. DDH: $ADV_D(k)$ is negligible, as a function of k, for all PPT D.

abstraction

reality

formality

We could play them both at once:

```
[x \stackrel{\mathbf{u}}{\leftarrow} \mathbb{Z}_q, \alpha \leftarrow \gamma^x
           (m_0, m_1) \xleftarrow{\diamond} A(\alpha),
          b \stackrel{\mathbf{u}}{\leftarrow} \{0, 1\}
          y \stackrel{\mathbf{u}}{\leftarrow} \mathbb{Z}_q, \ \beta \leftarrow \gamma^y,
          z \xleftarrow{\mathrm{u}} \mathbb{Z}_a
           d \stackrel{\mathbf{u}}{\leftarrow} \{0, 1\}
         \delta \leftarrow \begin{cases} \alpha^y & \text{, if } d = 0 \\ \gamma^z & \text{, if } d = 1 \end{cases}
           \zeta \leftarrow \delta \cdot m_b
          \hat{d} \stackrel{\diamond}{\leftarrow} D(\alpha, \beta, \delta)
          \hat{b} \stackrel{\diamond}{\leftarrow} A(\alpha, \beta, \zeta)
Y_k = ADV_D(k) = |P[d = d] - 1/2|
X_k = ADV_A(k) = |P[d = 0 \land b = \hat{b}] - 1/2|
```

abstraction

reality

formality

 $Y_k = \text{ADV}_D(k) = |P[d = \hat{d}] - 1/2|$ $X_k = \text{ADV}_A(k) = |P[d = 0 \land b = \hat{b}] - 1/2|$

Consider then $X = \{X_k\}_{k \in \mathbb{N}}$ and $Y = \{Y_k\}_{k \in \mathbb{N}}$. Under the assumption that $Y \in \mathfrak{N}_0$, then $X \in \mathfrak{N}_0$.

Indeed, we know that $X\overline{Y} \stackrel{s}{\approx} 0$, and $Y \in \mathfrak{N}_r$ implies $X \in \mathfrak{N}_r$.

abs	trad	ction

formality

formality

formality

abstraction

reality

formality

"formal" can mean several things:

- serious
- official
- precise
- methodical
- form over contents

does our theory allow us to argue formally (in the above sense)? yes! it is already a gain vs common practice.

could we actually automate our proofs? possibly...

formality

abstraction

reality

formality

once determined the ensemble on which a property is to be proved, the reasoning is symbolic.

- *boolean* ensembles inherit algebra of sets
 - with =, the same axioms of algebra of sets apply
- with $\stackrel{\circ}{\approx}$, some more axioms are added, some more inference rules are added
- the type of probability spaces we use in practice (discrete product spaces) seem to provide some natural subevent relation
- applying game transformation is more challenging; not easy to decide in fully automated fashion what transformation to apply among many other
- guaranteeing computational security using game transformation requires more effort.

formality

ALGEBRA OF ENSEMBLES WRT =

Commutative: XY = YXAssociative: X(YZ) = (XY)ZDistributive: X(Y+Z) = XY + XZTautology: XX = XAbsorption: X(X+Y) = XComplementation: $\overline{XX} = 0$ Double Complementation: $\overline{\overline{X}} = X$ De Morgan: $\overline{XY} = \overline{X} + \overline{Y}$ Neutrals: 0X = 0 $\frac{1X}{0} = 1$ X + Y = Y + XX + (Y + Z) = (X + Y) + ZX + YZ = (X + Y)(X + Z)X + X = XX + XY = X $X + \overline{X} = 1$

 $\overline{X+Y} = \overline{XY}$ 1+X=10+X=X $\overline{1}=0$

